Skip to main content
Log in

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Canada)

Instant access to the full article PDF.

Institutional subscriptions

Literature cited

  1. I. A. Taimanov, “Smooth real finite-zone solutions of sine-Gordon type equations,” Mat. Zametki,47, No. 1, 147–156 (1990).

    Google Scholar 

  2. A. B. Borisov and V. V. Kiseliev, “Topological defects in incommensurate magnetic and crystal structures and quasi-periodic solutions of the elliptic sine-Gordon equation,” Physica D,31, 49–64 (1988).

    Google Scholar 

  3. B. A. Dubrovin and S. M. Natanzon, “Real two-zone solutions of the sine-Gordon equation,” Funkts. Anal. Prilozhen.,16, No. 1, 27–43 (1982).

    Google Scholar 

  4. E. D. Belokolos and V. Z. Énol'skii, “Generalized Lamb ansatz,” Teor. Mat.53, No. 2, 271–282 (1982).

    Google Scholar 

  5. G. L. Lamb, Jr., “Analytical descriptions of ultrashort optical pulse porpagation in a resonant medium,” Rev. Modern Phys.,43, No. 2, 99–129 (1971).

    Google Scholar 

  6. O. V. Kaptsov, “Elliptic solutions of the stationary Euler equation,” Dokl. Akad. Nauk SSSR,298, No. 3, 597–600 (1988).

    Google Scholar 

  7. M. G. Forest and D. W. McLaughlin, “Spectral theory for the periodic sine-Gordon equation: a concrete viewpoint,” J. Math. Phys.,23, No. 7, 1248–1277 (1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Matematicheskie Zametki, Vol. 47, No. 3, pp. 100–105, March, 1990.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taimanov, I.A. Multivalued finite-zone solutions of the equation δu=sinu . Mathematical Notes of the Academy of Sciences of the USSR 47, 293–297 (1990). https://doi.org/10.1007/BF01138511

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01138511

Navigation