Skip to main content
Log in

A brief history of iron metabolism

  • Original Articles
  • Published:
Biology of Metals Aims and scope Submit manuscript

Summary

A concise history of selected aspects of iron metabolism is presented. According to present understanding, the element is known to be required for transport and reduction of O2, for reduction Of CO2, N2 and ribonucleotides, and for other essential cellular processes. The contributions of pioneers in the field, preeminent among them the cell physiologist and biochemist Otto Warburg, are recounted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Archibald F (1983)Micrococcus lysodeikticus, an organism not requiring iron. FEMS Microbiol Lett 19:29–32

    Google Scholar 

  • Bagg A, Neilands JB (1987) Molecular mechanism of regulation of siderophore-mediated iron assimilation. Microbiol Rev 51:509–518

    Google Scholar 

  • Blanton KJ, Biswas GD, Tsai J, Adams J, Dyer DW, Davis SM, Koch GG, Sen PK, Sparling PF (1990) Genetic evidence that Neisseria gonorrhoeae produces specific receptors for transferrin and lactoferrin. J Bacteriol 172:5225–5235

    Google Scholar 

  • Bullen JJ, Griffiths E (eds) (1987) Iron and infection. John Wiley & Sons, New York, pp 1–325

    Google Scholar 

  • Capaldi RA (1990) Structure and function of cytochromec oxidase. Annu Rev Biochem 59:569–596

    Google Scholar 

  • Fischer H, Orth H (1934) Die Chemie des Pyrrols I, Akademische Verlagsgesellschaft, Leipzig (reproduced by Johnson Reprint Corp., New York)

    Google Scholar 

  • Fischer H, Orth H (1937) Die Chemie des Pyrrols III Akademische Verlagsgesellschaft Leipzig (reproduced by Johnson Reprint Corp., New York)

    Google Scholar 

  • Fischer H, Stern A (1940) Die Chemie des Pyrrols II2 Akademische Verlagsgesellschaft, Leipzig (reproduced by Johnson Reprint Corp., New York)

    Google Scholar 

  • Hay RW (1984) Bio-inorganic chemistry. Ellis Horwood Ltd, Chichester, pp 1–210

    Google Scholar 

  • Jacobs A, Worwood M (eds) (1980) Iron in biochemistry and medicine, II. Academic Press, London, pp 1–706

    Google Scholar 

  • Keilin D (1966) The history of cell respiration and cytochrome. Cambridge University Press, Cambridge, pp 1–416

    Google Scholar 

  • Konetschny-Rapp S, Jung G, Meiwes J, Zähner H (1990) Staphyloferrin A: a structurally new siderophore from staphylococci. Eur J Biochem 191:65–74

    Google Scholar 

  • Krebs HA (1981) Otto Warburg: cell physiologist, biochemist and eccentric. Clarendon Press, Oxford, pp 1–141

    Google Scholar 

  • Lankford CE (1973) Bacterial assimilation of iron. Crit Rev Microbiol 2:273–331

    Google Scholar 

  • Martin JH, Gordon RM, Fitzwater SE (1990) Iron in antarctic waters. Nature 345:156–158

    Google Scholar 

  • Miller GW, Pushnik JC, Welkie GW (1984) Iron chlorosis, a world wide problem: The relation of chlorophyll biosynthesis to iron. J Plant Nutr 7:1–22

    Google Scholar 

  • Racker E (1982) Otto Warburg at a turning point in 1932. TIBS 7:448–449

    Google Scholar 

  • Schade AL, Caroline L (1944) Raw hen egg white and the role of iron in growth inhibition ofShigella dysenteriae, Staphylococcus aureus, Escherichia coli andSaccharomyces cerevisiae. Science 100:14–15

    Google Scholar 

  • Schade AL, Caroline L (1946) An iron binding component in human blood plasma. Science 104:340–341

    Google Scholar 

  • Schwyn B (1983) Die Hydrolyse von Eisen (III) Abhandlung der Eidgenössischen Technischen Hochschule. Zürich, pp 1–166

  • Smith MJ, Shoolery JN, Schwyn B, Holden L, Neilands JB (1985) Rhizobactin, a structurally novel siderophore fromRhizobium mehloti. J Am Chem Soc 107:1739–1743

    Google Scholar 

  • Theorell H (1948) The Biochemical Department of the Nobel Medical Institute. Acta Chem Scand 2:941–943

    Google Scholar 

  • Underwood EJ (1971) Trace elements in human and animal nutrition. 3rd edn. Academic Press, New York, pp 1–543

    Google Scholar 

  • Vincent JB, Averill BA (1990) An enzyme with a double identity: purple acid phosphatase and tartrate-resistant acid phosphatase. FASEB J 4:3009–3014

    Google Scholar 

  • Warburg O (1949) Heavy metal prosthetic groups and enzyme action. Clarendon Press, Oxford, pp 1–230

    Google Scholar 

  • Weinberg ED (1984) Iron withholding: a defense against infection and neoplasia. Physiol Rev 64:65–102

    Google Scholar 

  • Winkelmann G, van der Helm D, Neilands JB (eds) (1987) Iron transport in microbes, plants and animals. VCH Press, Weinheim, pp 1–533

    Google Scholar 

  • Worwood M (1989) An overview of iron metabolism at a molecular level. J Internal Med 226:381–391

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neilands, J.B. A brief history of iron metabolism. Biol Metals 4, 1–6 (1991). https://doi.org/10.1007/BF01135550

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01135550

Key words

Navigation