Skip to main content
Log in

Characterization of a soluble ferric reductase fromNeisseria gonorrhoeae

  • Original Articles
  • Published:
Biology of Metals Aims and scope Submit manuscript

Summary

An NADH-dependent ferric reductase was identified in extracts ofNeisseria gonorrhoeae. Enzyme activity was measured in an assay using ferrozine as the ferrous iron acceptor. Ferric reductase activity was enhanced by Mg2+ and flavine nucleotides. The enzyme reduced both citrate- and diphosphate-bound ferric iron as well as ferric hydroxide (Imferon). However, no activity was observed with either 30%-iron-saturated transferrin or with the gonococcal iron-binding protein, Fbp. The ferric reductase was found primarily within the cytoplasmic cell fraction. The soluble ferric reductase was purified 110-fold by ammonium sulfate precipitation, gel and anion-exchange chromatography. Results obtained following gel chromatography and SDS/polyacrylamide gel electrophoresis suggested that the enzyme had a molecular mass of about 25 kDa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arceneaux JEL, Byers BR (1980) Ferrisiderophore reductase activity inBacillus megaterium. J Bacteriol 141:715–720

    PubMed  Google Scholar 

  • Bergström S, Norlender L, Norqvist A, Normark S (1978) Contribution of a TEM-1-likeβ-lactamase to penicillin resistance inNeisseria gonorrhoeae. Antimicrob Agents Chemother 13:618–623

    PubMed  Google Scholar 

  • Berish SA, Mietzner TA, Genco CA, Mayer L, Holloway BP, Morse SA (1990) Molecular cloning and characterization of the structural gene for the major iron-regulated protein expressed byNeisseria gonorrhoeae. J Exp Med 171:1535–1546

    PubMed  Google Scholar 

  • Bradford MM (1976) A rapid sensitive method for the quantitation of microgram quantities of protein using the principle of protein-dye binding. Anal Biochem 72:248–254

    PubMed  Google Scholar 

  • Brown KA, Ratledge C (1975) Iron transport inMycobacterium smegmatis: ferrimycobactin reductase [NAD(P): ferrimycobactin oxidoreductase], the enzyme releasing iron from its carrier. FEBS Lett 53:262–266

    PubMed  Google Scholar 

  • Bullen J, Rogers HJ, Griffiths E (1978) Role of iron in bacterial infections. Curr Top Microbiol Immunol 80:1–35

    PubMed  Google Scholar 

  • Cowart RE, Foster BG (1985) Differential effects of iron on the growth ofListeria monocytogenes: minimum requirement and mechanism of acquisition. J Infect Dis 151:721–730

    PubMed  Google Scholar 

  • Cox CD (1980) Iron reductase fromPseudomonas aeruginosa. J Bacteriol 141:199–204

    PubMed  Google Scholar 

  • Dailey HA, Lascelles J (1977) Reduction of iron and synthesis of protoheme bySpirillum itersonii and other organisms. J Bacteriol 129:815–820

    PubMed  Google Scholar 

  • Deyer DW, West EP, Sparling PF (1987) Effects of serum carrier proteins on the growth of the pathogenic neisseriae with heme-bound iron. Infect Immun 55:2171–2175

    PubMed  Google Scholar 

  • Gaines CG, Lodge JS, Arceneaux JEL, Byers BR (1981) Ferrisiderophore reductase activity associated with an aromatic biosynthetic enzyme complex inBacillus subtilis. J Bacteriol 148:527–533

    PubMed  Google Scholar 

  • Halle F, Meyer JM (1989) Ferripyoverdine-reductase activity inPseudomonas fluorescens. Biol Metals 2:18–24

    Google Scholar 

  • Huyer M, Page WJ (1989) Ferric reductase activity inAzotobacter vinelandii and its inhibition by Zn2+. J Bacteriol 171:4031–4037

    PubMed  Google Scholar 

  • Kojima N, Bates GW (1979) The reduction and release of iron from Fe3+ transferrin-CO 2−3 . J Biol Chem 254:8847–8854

    PubMed  Google Scholar 

  • Laemmli VK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    PubMed  Google Scholar 

  • Lascelles J, Burke KA (1976) Reduction of ferric iron byl-lactate andDL-glycerol 3-phosphate in membrane preparations fromStaphylococcus aureus and interactions with the nitrate reductase system. J Bacteriol 134:585–589

    Google Scholar 

  • Lee BC, Schryvers AB (1988) Specificity of the lactoferrin and transferrin receptors inNeisseria gonorrhoeae. Mol Microbiol 2:827–829

    PubMed  Google Scholar 

  • Le Faou A (1985) Etude physiologique et métabolique de l'assimilation des formes minérales du soufre chezNeisseria gonorrhoeae. Thèse d'Etat de Sciences, Université Louis Pasteur, Strasbourg

    Google Scholar 

  • Lodge JS, Gaines CG, Arceneaux JEL, Byers BR (1982) Ferrisiderophore reductase activity inAgrobacterium tumefaciens. J Bacteriol 149:771–774

    PubMed  Google Scholar 

  • McKenna WR, Mickelsen PA, Sparling PF, Dyer DW (1988) Iron uptake from lactoferrin and transferrin byNeisseria gonorrhoeae. Infect Immun 56:785–791

    PubMed  Google Scholar 

  • McReady KA, Ratledge C (1977) Ferrimycobactin reductase activity fromMycobacterium smegmatis. J Gen Microbiol 6:292–297

    Google Scholar 

  • Mietzner TM, Luginbuhl GH, Sandström E, Morse SA (1984) Identification of an iron-regulated 37000-Da protein in the cell envelope ofNeisseria gonorrhoeae. Infect Immun 45:410–416

    PubMed  Google Scholar 

  • Mietzner TA, Bolan G, Schoolnick GK, Morse SA (1987) Purification and characterization of the major iron-regulated protein expressed by pathogenicNeisseria. J Exp Med 165:1041–1057

    PubMed  Google Scholar 

  • Moody MD, Dailey HA (1983) Aerobic ferrisiderophore reductase assay and activity stain for native polyacrylamide gels. Anal Biochem 134:235–239

    PubMed  Google Scholar 

  • Moody MD, Dailey HA (1985) Ferric iron reductase ofRhodopseudomonas sphaeroides. J Bacteriol 163:1120–1125

    PubMed  Google Scholar 

  • Morse SA, Stein S, Hines J (1974) Glucose metabolism inNeisseria gonorrhoeae. J Bacteriol 120:702–714

    PubMed  Google Scholar 

  • Neilands JB (1981a) Iron absorption and transport in microorganisms. Annu Rev Nutr 1:27–46

    PubMed  Google Scholar 

  • Neilands JB (1981b) Microbial iron compounds. Annu Rev Biochem 50:715–731

    PubMed  Google Scholar 

  • O'Callaghan CH, Morris A, Kirby SM, Shingler AH (1972) Novel method for detection ofβ-lactamase by using a chromogenic cephalosporin substrate. Antimicrob Agents Chemother 1:283–288

    PubMed  Google Scholar 

  • West SEH, Sparling PF (1985) Response ofNeisseria gonorrhoeae to iron limitation: alterations in expression of membrane proteins without apparent siderophore production. Infect Immun 47:388–394

    PubMed  Google Scholar 

  • West SEH, Sparling PF (1987) Aerobactin utilization byNeisseria gonorrhoeae and cloning of a genomic DNA fragment that complementsEscherichia coli fhuB mutations. J Bacteriol 169:3414–3421

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Le Faou, A.E., Morse, S.A. Characterization of a soluble ferric reductase fromNeisseria gonorrhoeae . Biol Metals 4, 126–131 (1991). https://doi.org/10.1007/BF01135390

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01135390

Key words

Navigation