Skip to main content
Log in

Volatile probes for spectral research on silicate transformations

  • Brief Communications
  • Published:
Theoretical and Experimental Chemistry Aims and scope

Abstract

A theoretical analysis is presented for the properties of iron-group ions in layer silicates. The most suitable probe for examining AlO6 → AlO4 transitions is CO2+, whose electronic structure makes it capable of reflecting the symmetry of the predominant AlO6 or AlO4 elements in layer silicates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literature cited

  1. Yu. I. Tarasevich, “Structure, surface chemistry, and adsorptivity for layer silicates,” in: Physicochemical Mechanics and Lyophilicity in Disperse Systems [in Russian], Issue 13 (1981), pp. 20–26.

  2. A. G. Plachinda, F. D. Ovcharenko, E. F. Makarov, et al., “A Mössbauer study on the structural changes in montmorillonite on heat treatment,” Teor. Éksp. Khim.,9, No. 3, 391–394 (1973).

    Google Scholar 

  3. L. Heller-Kallai and I. Rozenson, “Dehydroxylation of dioctahedral phyllosilicates,” Clays Clay Miner.,28, No. 5, 355–368 (1980).

    Google Scholar 

  4. E. G. Sivalov and Yu. I. Tarasevich, “A spectral study on exchangeable-cation states for trivalent chromium in montmorillonite,” Dokl. Akad. Nauk Ukr. SSR, Ser. B, No. 11, 1003–1007 (1976).

    Google Scholar 

  5. N. N. Pafomov, Yu. I. Tarasevich, E. G. Sivalov, and V. A. Sil'chenko, “ESR and optical studies on the states of exchangeable Cu2+ in montmorillonite and kaolinite,” ibid., No. 8, 643–648 (1979).

    Google Scholar 

  6. R. C. Mackenzie, “Retention of exchangeable ions by montmorillonite,” Proc. Int. Clay Conf., Stockholm, August 12–16, 1963, Vol. 1, Pergamon Press, Oxford (1963), pp. 183–193.

    Google Scholar 

  7. D. T. Sviridov, R. K. Sviridova, and Yu. F. Smirnov, Optical Spectra for TransitionMetal Ions in Crystals [in Russian], Nauka, Moscow (1976).

    Google Scholar 

  8. A. N. Platonov, The Nature of Color in Minerals [in Russian], Naukova Dumka, Kiev (1976).

    Google Scholar 

  9. D. T. Sviridov and R. K. Sviridova, “Optical Cr3+ spectra for tetrahedral coordination in the inverse spinel LiGa5O8,” Zh. Prikl. Spektrosk.,34, No. 4, 663–666 (1981).

    Google Scholar 

  10. D. Reinen and J. Grefer, “Der Jahn-Teller Effekt des Cu2+ Ions in tetraedrischer Säuerstoff-Koordination,” Z. Naturforsch. A,28, No. 7, 1185–1192 (1973).

    Google Scholar 

  11. W. Vedder and R. W. T. Wilkins, “Dehydroxylation and rehydroxylation-oxidation and reduction of micas,” Am. Miner.,54, No. 3/4, 482–509 (1969).

    Google Scholar 

  12. Yu. I. Tarasevich and A. V. Pustovit, “Interpreting optical spectra for trace Fe2+ in layer silicates,” Teor. Éksp. Khim.,23, No. 4, 464–468 (1987).

    Google Scholar 

  13. Yu. I. Tarasevich and E. G. Sivalov, “Structural transitions on heating montmorillonite and kaolinite examined by optical spectroscopy,” Kristallografiya,23, No. 5, 1055–1057 (1978).

    Google Scholar 

  14. Yu. I. Tarasevich and E. G. Sivalov, “Electronic spectra for aqua cations for divalent cobalt sorbed on montmorillonite,” Teor. Éksp. Khim.,11, No. 3, 410–415 (1975).

    Google Scholar 

  15. N. N. Pafomov, Yu. I. Tarasevich, V. A. Sil'chenko, and E. G. Sivalov, “An ESR study on the states of exchangeable Co2+ in montmorillonite,” ibid.,12, No. 6, 843–846 (1976).

    Google Scholar 

  16. L. Sacconi, “Five-coordination in 3d-metal complexes,” Pure and Appl. Chem.,117, No. 1, 95–127 (1968).

    Google Scholar 

  17. Yu. I. Tarasevich, Layer-Silicate Structures and Surface Chemistry [in Russian], Naukova Dumka, Kiev (1988).

    Google Scholar 

  18. R. Wardle and G. W. Brindley, “The crystal structures of pyrophyllite, 1T[inC, and of its dehydroxylate,” Am. Miner.,57, No. 5/6, 732–750 (1972).

    Google Scholar 

  19. K. Balhausen, Introduction to Ligand-Field Theory [Russian translation], Mir, Moscow (1964).

    Google Scholar 

  20. I. B. Bersuker, Coordination-Compound Electronic Structures and Properties [in Russian], Khimiya, Leningrad (1976).

    Google Scholar 

  21. Yu. V. Shulepov, A. V. Pustovit, “The Jahn-Teller effect in cubic-symmetry fields with allowance for spin-orbit interaction: the4T-e-t2 case,” Khim. Fiz., No. 6, 709–715 (1982).

    Google Scholar 

  22. A. V. Pustovit, Vibronic Effects in the T Terms for Coordination Compounds on the Occurrence of Spin-Orbit Interaction: Ph.D. Thesis [Russian], Donetsk (1986).

  23. Yu. V. Shulepov, F. D. Ovcharenko, and A. V. Pustovit, “The dynamic Jahn-Teller effect for a4T term in a cubic-symmetry field: the4T-e case,” Dokl. Akad. Nauk SSSR,257, No. 2, 423–427 (1981).

    Google Scholar 

  24. M. Wagner and P. Koidl, “Evidence of weak Jahn-Teller effect of Co2+ in MgO,” J. Magn. Magn. Mater., 15/18, 33–34 (1980).

    Google Scholar 

  25. T. Ray and J. R. Regnard, “Dynamical Jahn-Teller effect in the ground4T1g and the excited4T2g orbital triplets of Co2+ ion in an MgO crystals,” Phys. Rev. B,9, No. 5, 2110–2121 (1974).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Teoreticheskaya i Éksperimental'naya Khimiya, No. 2, pp. 240–244, March–April, 1989.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pustovit, A.V., Tarasevich, Y.I. & Shulepov, Y.V. Volatile probes for spectral research on silicate transformations. Theor Exp Chem 25, 219–222 (1989). https://doi.org/10.1007/BF01135016

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01135016

Keywords

Navigation