Skip to main content
Log in

Efficiency of muscle contraction. The chemimechanic equilibrium

  • Published:
Naturwissenschaften Aims and scope Submit manuscript

Abstract

Although muscle contraction is one of the principal themes of biological research, the exact mechanism whereby the chemical free energy of ATP hydrolysis is converted into mechanical work remains elusive. The high thermodynamic efficiency of the process, above all, is difficult to explain on the basis of present theories. A model of the elementary effect in muscle contraction is proposed which aims at high thermodynamic efficiency based on an approximate equilibrium between chemical and mechanical forces throughout the transfer of free energy. The experimental results described in the literature support the assumption that chemimechanic equilibrium is approximated by a free energy transfer system based on the binding of divalent metal ions to the myosin light chains. Muscle contraction demonstrated without light chains is expected to proceed with a considerably lower efficiency. Free energy transfer systems based on the binding of ions to proteins seem to be widespread in the cell. By establishing an approximate chemimechanic equilibrium, they could facilitate biological reactions considerably and save large amounts of free energy. The concept of chemimechanic equilibrium is seen as a supplementation to the concept of chemiosmotic equilibrium introduced for the membrane transport by P. Mitchell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Huxley, H. E.: Science164, 1356 (1969)

    PubMed  Google Scholar 

  2. Eisenberg, E., Hill, T. L.: Science227, 999 (1985)

    PubMed  Google Scholar 

  3. Geeves, M. A.: Biochem. J.274, 1 (1991)

    PubMed  Google Scholar 

  4. Woledge, R. C.: Nature334, 655 (1988)

    Google Scholar 

  5. Simmons, R. M., Szent-Gyorgyi, A. G.: Nature273, 62 (1978); 286, 626 (1980)

    PubMed  Google Scholar 

  6. Huxley, A. F., Simmons, R. M.: ibid.233, 533 (1971); Huxley, A. F.: J. Physiol.243, 1 (1974)

    PubMed  Google Scholar 

  7. Brenner, B., Schoenberg, M., Chalovich, J. M., Greene, L. E., Eisenberg, E.: Proc. Natl. Acad. Sci. USA79, 7288 (1982)

    PubMed  Google Scholar 

  8. Matsuda, T., Podolsky, R. J.: ibid.81, 2364 (1984); Brenner, B., Yu, L. C., Podolsky, R. J.: Biophys. J.46, 299 (1984)

    PubMed  Google Scholar 

  9. Winkelmann, D. A., Almeda, S., Vibert, P., Cohen, C.: Nature307, 758 (1984)

    PubMed  Google Scholar 

  10. Kwon, H., Goodwin, E. B., Nyitray, L., Berliner, E., O'Neall-Hennessy, E., Melandri, F. D., Szent-Gyorgyi, A. G.: Proc. Natl. Acad. Sci. USA87, 4771 (1990)

    PubMed  Google Scholar 

  11. Bagshaw, C. R., Kendrick-Jones, J.: J. Mol. Biol.130, 317 (1979)

    PubMed  Google Scholar 

  12. Reinach, F. C., Nagai, K., Kendrick-Jones, J.: Nature322, 80 (1986)

    PubMed  Google Scholar 

  13. In a preliminary publication on the free energy transfer by myosin light chains [E. W. Becker, Naturwissenschaften77, 478 (1990)], the arguments were based mainly on the similarity between the regulatory light chain and the regulatory protein calmodulin. So, a predominance of calcium in the free energy transfer process was assumed. The potential advantages of a free energy transfer system based on ion binding to myosin light chains, of course, do not depend on the special ions actually involved

  14. Cox, J. A., Comte, M., Mamar-Bachi, A., Milos, M., Schaer, J.-J., in: Calcium and Calcium Binding Proteins, p. 141 (Gerday, Ch., Gilles, R., Bolis, L., eds.). Heidelberg: Springer 1988

    Google Scholar 

  15. Kataoka, M., Head, J. F., Seaton, B. A., Engelman, D. M.: Proc. Natl. Acad. Sci. USA86, 6944 (1989)

    PubMed  Google Scholar 

  16. The degree of cooperativity, of course, will depend on the number of exchangeable ions per light chain, which, with the knowledge at hand, can be determined only arbitrarily. The two-headed construction of the myosin molecule, on the other hand, can be expected to help in the cooperativity of ion binding in any case

  17. Hardwicke, P. M. D., Wallimann, T., Szent-Gyorgyi, A. G.: Nature301, 478 (1983)

    PubMed  Google Scholar 

  18. Amos, L. A., Huxley, H. E., Holmes, K. C., Goody, R. S., Taylor, K. A.: ibid.299, 467 (1982)

    PubMed  Google Scholar 

  19. Walker, M., Trinick, J.: J. Mol. Biol.208, 469 (1989)

    PubMed  Google Scholar 

  20. Cooke, R.: Nature294, 570 (1981)

    PubMed  Google Scholar 

  21. Yanagida, T.: J. Mol. Biol.146, 539 (1981)

    PubMed  Google Scholar 

  22. Tokunaga, M., Sutoh, K., Toyoshima, C., Wakabayashi, T.: Nature329, 635 (1987)

    PubMed  Google Scholar 

  23. Yamamoto, K.: J. Mol. Biol.209, 703 (1989)

    PubMed  Google Scholar 

  24. Yanagida, T., Arata, T., Oosawa, F.: Nature316, 366 (1985)

    PubMed  Google Scholar 

  25. Fenn, W. O.: J. Physiol. London58, 373 (1924)

    Google Scholar 

  26. Curmi, P. M. G., Stone, D. B., Schneider, D. K., Spudich, J. A., Mendelson, R. A.: J. Mol. Biol.203, 781 (1988)

    PubMed  Google Scholar 

  27. Craig, R., Greene, L. E., Eisenberg, E.: Proc. Natl. Acad. Sci. USA82, 3247 (1985)

    PubMed  Google Scholar 

  28. Squire, J.: Nature335, 590 (1988)

    PubMed  Google Scholar 

  29. Brenner, B.: Proc. Natl. Acad. Sci. USA85, 3265 (1988)

    PubMed  Google Scholar 

  30. Chacko, S., Conti, M. A., Adelstein, R. S.: ibid.74, 129 (1977)

    PubMed  Google Scholar 

  31. Kendrick-Jones, J., Szentkiralyi, E. M., Szent-Gyorgyi, A. G.: J. Mol. Biol.104, 747 (1976)

    PubMed  Google Scholar 

  32. Becker, E. W.: Naturwissenschaften77, 176 (1990)

    PubMed  Google Scholar 

  33. Becker, E. W.: ibid.77, 436 (1990)

    PubMed  Google Scholar 

  34. Mitchell, P.: Nature191, 144 (1961)

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Becker, E.W. Efficiency of muscle contraction. The chemimechanic equilibrium. Naturwissenschaften 78, 445–449 (1991). https://doi.org/10.1007/BF01134378

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01134378

Keywords

Navigation