Skip to main content
Log in

An analysis of the zero differential overlap approximation. Towards an improved semiempirical MO method beyond it

  • Published:
Theoretica chimica acta Aims and scope Submit manuscript

Summary

Some systematic errors of the zero differential overlap (ZDO) approximation in semiempirical molecular orbital (MO) methods are discussed. In π electron methods, a power series expansion of the inverse square rootS −1/2 of the overlap matrix and application of the Mulliken approximation to the two-electron integrals show that the ZDO Hamiltonian coincides with the Hamiltonian obtained by explicit performance of the Löwdin transformation up to first-order terms of diatomic overlap densities. Higher than first-order terms lead to a systematic up-shift of the canonical MO energies. Although a power series expansion ofS −1/2 is no longer possible in all-valence-electron methods, the MO levels resulting from the ZDO approximation are also systematically placed at too low energies, especially the low-lying occupied and the virtual MOs. A method based on explicit performance of the Löwdin transformation and retaining the simplicity of the ZDO approach for the calculation of Fock matrix elements is developed. The parameters of this method are obtained by very simple manipulations of the original ZDO parameters. Numerical calculations show that a considerable improvement of the MO energy spectrum in the inner valence region can be obtained in this way

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pople JA, Santry DP, Segal GA (1965) J Chem Phys 43:S129

    Google Scholar 

  2. Pople JA, Segal GA (1965) J Chem Phys 43:S136

    Google Scholar 

  3. Pople JA, Segal GA (1966) J Chem Phys 44:3289

    Google Scholar 

  4. Santry DP, Segal GA (1967) J Chem Phys 47:158

    Google Scholar 

  5. Pople JA, Beveridge DL, Dobosh PA (1967) J Chem Phys 47:2026

    Google Scholar 

  6. Dixon RN (1967) Mol Phys 12:83

    Google Scholar 

  7. Baird NC, Dewar MJS (1969) J Chem Phys 50:1262

    Google Scholar 

  8. Dewar MJS, Haselbach E (1970) J Am Chem Soc 92:590

    Google Scholar 

  9. Bingham RC, Dewar MJS, Lo DH (1975) J Am Chem Soc 97:1285

    Google Scholar 

  10. Dewar MJS, Thiel W (1977) J Am Chem Soc 99:4899

    Google Scholar 

  11. Dewar MJS, Zoebisch FG, Healy EF, Stewart JJP (1985) J Am Chem Soc 107:3902

    Google Scholar 

  12. Hoffmann R (1963) J Chem Phys 39:1397

    Google Scholar 

  13. Wolfsberg M, Helmholtz L (1952) J Chem Phys 20:837

    Google Scholar 

  14. Yonezawa T, Yamaguchi K, Kato H (1967) Bull Chem Soc Japan 40:536

    Google Scholar 

  15. Berthier G, Baudet J, Suard M (1963) Tetrahedron 19 Suppl 2:1

    Google Scholar 

  16. Löwdin PO (1950) J Chem Phys 18:365

    Google Scholar 

  17. Löwdin PO (1970) Adv Quant Chem 5:185

    Google Scholar 

  18. Nanda DN, Jug K (1980) Theor Chim Acta 57:95

    Google Scholar 

  19. Filatov MJ, Gritsenko OV, Zhidomirov GM (1987) Theor Chim Acta 72:211

    Google Scholar 

  20. Filatov MJ, Zilberberg IL, Zhidomirov GM (1992) Int J Quant Chem 44:565

    Google Scholar 

  21. Kolb M, Thiel W (1993) J Comp Chem 14:775

    Google Scholar 

  22. Fischer-Hjalmars I (1965) Adv Quant Chem 2:25

    Google Scholar 

  23. Fischer-Hjalmars I (1966) Theor Chim Acta 4:332

    Google Scholar 

  24. Fischer-Hjalmars I (1965) J Chem Phys 42:1962

    Google Scholar 

  25. de Bruijn S (1978) Chem Phys Lett 54:399

    Google Scholar 

  26. de Bruijn S (1981) In: Carbó R (ed) Current Aspects of Quantum Chemistry, Elsevier. Studies in Physical and Theoretical Chemistry, Vol. 21, p. 251

  27. de Bruijn S (1984) Int J Quant Chem 25:367

    Google Scholar 

  28. Brown RD, Roby KR (1970) Theor Chim Acta 16:175

    Google Scholar 

  29. Brown RD, Roby KR (1970) Theor Chim Acta 16:194

    Google Scholar 

  30. Brown RD, Burden FR, Williams GR (1970) Theor Chim Acta 18:98

    Google Scholar 

  31. Gray NAB, Stone AJ (1970) Theor Chim Acta 18:389

    Google Scholar 

  32. Chandler GS, Grader FE (1980) Theor Chim Acta 54:131

    Google Scholar 

  33. Roby KR (1971) Chem Phys Lett 11:6

    Google Scholar 

  34. Roby KR (1972) Chem Phys Lett 12:579

    Google Scholar 

  35. King HF, Newton MD, Stanton RE (1975) Chem Phys Lett 31:66

    Google Scholar 

  36. Spanget-Larsen J (1980) Theor Chim Acta 55:165

    Google Scholar 

  37. Spanget-Larsen J (1984) Croat Chem Acta 57:991; (1986) Croat Chem Acta 59:711

    Google Scholar 

  38. Waluk J, Mordzinski A, Spanget-Larsen J Thulstrup EW (1987) Chem Phys 116:411

    Google Scholar 

  39. Spanget-Larsen J, Waluk J, Thulstrup EW (1990) J. Phys Chem 94:1800

    Google Scholar 

  40. Spanget-Larsen J, Waluk J, Eriksson S, Thulstrup EW (1992) J Am Chem Soc 114:1942

    Google Scholar 

  41. Nicholson BJ (1970) Adv Chem Phys 18:249

    Google Scholar 

  42. Jug K (1969) Theor Chim Acta 14:91

    Google Scholar 

  43. Sustmann R, Williams JE, Dewar MJS, Allan LC, Schleyer P von R (1969) J Am Chem Soc 91:5350

    Google Scholar 

  44. Mulliken RS (1949) J Chim Phys 46:497,675

    Google Scholar 

  45. Ruedenberg K (1951) J Chem Phys 19:1433

    Google Scholar 

  46. Koch W (1993) Z Naturforsch 48a:819

    Google Scholar 

  47. Cook DB, Hollis CP, McWeeny R (1967) Mol Phys 13:553

    Google Scholar 

  48. Brown RD, Roby KR (1970) Theor Chim Acta 16:278

    Google Scholar 

  49. Roby KR, Sinanoglu O (1969) Int J Quant Chem 3S:223

    Google Scholar 

  50. Chandrasekhar J, Mehrotra PK, Subramainan S, Manoharan PT (1976) Theor Chim Acta 41:243

    Google Scholar 

  51. Halgren TA, Lipscomb WN (1973) J Chem Phys 58:1569

    Google Scholar 

  52. Zerner M (1975) J Chem Phys 62:2788

    Google Scholar 

  53. Andersen OK (1975) Phys Rev B12:3060

    Google Scholar 

  54. Williams AR, Kübler J, Gelatt CD, jr (1979) Phys Rev B19:6094

    Google Scholar 

  55. Ricart JM, Illas F, Dovesi R, Pisani C, Roetti C (1984) Chem Phys Lett 108:593

    Google Scholar 

  56. Zunger A (1978) Phys Rev B17:626

    Google Scholar 

  57. Ramirez R, Böhm MC (1988) Int J Quant Chem 34:47

    Google Scholar 

  58. Hirsch JE, Scalapino DJ, Sugar RL, Blankenbecler R (1982) Phys Rev B26:5033

    Google Scholar 

  59. Hirsch JE (1987) In: Jerome D, Caron LG (eds) Low-dimensional conductors and superconductors, Plenum, New York

    Google Scholar 

  60. Pariser R, Parr RG (1953) J Chem Phys 21:466, 767

    Google Scholar 

  61. Pople JA (1953) Trans Faraday Soc 49:1375

    Google Scholar 

  62. Lee AM, Klemm S, Risser S (1986) In: Malik FB (ed) Condensed Matter Theories Vol. 1, Plenum, New York

    Google Scholar 

  63. Lee AM, Motakabbir KA, Schmidt KE (1984) Phys Rev Lett 53:1191

    Google Scholar 

  64. Julg A (1958) J Chim Phys 55:413

    Google Scholar 

  65. Julg A (1963) Tetrahedron 19 Suppl 2:25

    Google Scholar 

  66. Huzinaga S (1958) J Phys Soc Jap 13:1189

    Google Scholar 

  67. Cook DB (1977) Theor Chim Acta 46:291

    Google Scholar 

  68. Goeppert-Mayer M, Sklar AL (1938) J Chem Phys 6:645

    Google Scholar 

  69. Mulliken RS (1955) J Chem Phys 23:1833, 1841

    Google Scholar 

  70. Coulson CA, Rushbrooke GS (1940) Proc Cambridge Philos Soc 36:193

    Google Scholar 

  71. Salem L (1966) The molecular orbital theory of conjugated systems. Benjamin New York

    Google Scholar 

  72. Ruedenberg K (1962) Rev Mod Phys 34:326

    Google Scholar 

  73. Ruedenberg K (1961) J Chem Phys 34:1861, 1878, 1884, 1892

    Google Scholar 

  74. Kutzelnigg W (1973) Angew Chem 85:551

    Google Scholar 

  75. Driessler F, Kutzelnigg W (1976) Theor Chim Acta 43:1

    Google Scholar 

  76. Driessler F, Kutzelnigg W (1977) Theor Chim Acta 43:307

    Google Scholar 

  77. Jug K (1970) Theor Chim Acta 16:95

    Google Scholar 

  78. Jug K (1971) Theor Chim Acta 23:183

    Google Scholar 

  79. Jug K (1972) Theor Chim Acta 26:231

    Google Scholar 

  80. Parr RG, Crawford BL Jr (1948) J Chem Phys 16:1049

    Google Scholar 

  81. Hückel E (1931) Z Physik 70:204

    Google Scholar 

  82. Hückel E (1932) Z Physik 76:68

    Google Scholar 

  83. Albright TA, Burdett JK, Whangbo MH (1985) Orbital interactions in chemistry, Chapter 2. Wiley, New York

    Google Scholar 

  84. Fischer H, Kollmar H (1969) Theor Chim Acta 13:213

    Google Scholar 

  85. Böhm MC, Gleiter R (1981) Theor Chim Acta 59:127

    Google Scholar 

  86. Coffey P (1974) Int J Quant Chem 8:263

    Google Scholar 

  87. Zerner MC (1972) Mol Phys 23:963

    Google Scholar 

  88. Löwdin PO (1967) Int J Quant Chem 1S:811

    Google Scholar 

  89. Ruttink PJA (1966) Theor Chim Acta 6:83

    Google Scholar 

  90. Voigt B (1973) Theor Chim Acta 31:289

    Google Scholar 

  91. Dewar MJS, Hojvat (Sabelli) NL (1961) J Chem Phys 34:1232

    Google Scholar 

  92. Dewar MJS, Hojvat (Sabelli) NL (1961) Proc Roy Soc London A264:431

    Google Scholar 

  93. Dewar MJS, Sabelli LN (1962) J Phys Chem 66:2310

    Google Scholar 

  94. Ohno K (1964) Theor Chim Acta 3:219

    Google Scholar 

  95. Klopman G (1964) J Am Chem Soc 86:4550

    Google Scholar 

  96. Mataga N, Nishimoto K (1957) Z Phys Chemie 12:335

    Google Scholar 

  97. Mataga N, Nishimoto K (1957) Z Phys Chemie 13:140

    Google Scholar 

  98. Chirgwin BH, Coulson CA (1950) Proc Roy Soc London A201:196

    Google Scholar 

  99. Gaussian 92, Revision C, Frisch MS, Trucks GW, Head-Gordon M, Gill PMN, Wong MW, Foresman JB, Johnson BG, Schlegel HB, Robb MA, Replogle ES, Gomperts R, Andres JL, Raghavachari K, Binkley JS, Gonzalez G, Martin RL, Fox DJ, Defrees DJ, Baker J, Stewart JJP, Pople JA (1992) Gaussian, Pittsburgh PA

  100. Ammeter JH, Bürgi HB, Thibeault JC, Hoffmann R (1978) J Am Chem Soc 100:3686

    Google Scholar 

  101. Whangbo M-H, Hoffmann R (1978) J Chem Phys 68:5498

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kollmar, C., Böhm, M.C. An analysis of the zero differential overlap approximation. Towards an improved semiempirical MO method beyond it. Theoret. Chim. Acta 92, 13–47 (1995). https://doi.org/10.1007/BF01134202

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01134202

Key words

Navigation