Skip to main content
Log in

“Small” models of relaxation of a dense inert-gas plasma

  • Published:
Journal of Soviet Laser Research Aims and scope

Abstract

Problems of mathematical simulation of the relaxation kinetics of the plasma of dense inert gases are considered. A “small” model is constructed for the relaxation of helium plasma; the model takes into account the time dependences of the density and temperature of the electrons, of the gas temperature, and of the population of one effective excimer state. The results of the calculations agree with the preceding results of an analysis of a more detailed model (15 equations) at pressures higher than atmospheric. A small model for the relaxation of a xenon plasma is constructed and takes into account also the effective excited atomic state. The calculation results are compared with the experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  1. L. I. Gudzenko, I. S. Lakoba, and S. I. Yakovlenko, J. Sov. Laser Res.,3, No. 3 (1982).

  2. L. I. Gudzenko, I. S. Lakoba, and S. I. Yakovlenko, Zh. Eksp. Teor. Fiz.,67, 2022–2034 (1974).

    Google Scholar 

  3. L. I. Gudzenko, I. S. Lakoba, and S. I. Yakovlenko, Tr. Fiz. Inst. Akad. Nauk,90, 61–90 (1976).

    Google Scholar 

  4. L. I. Gudzenko and S. I. Yakovlenko, Plasma Lasers [in Russian], Atomizdat, Moscow (1978).

    Google Scholar 

  5. E. V. George and C. K. Rhodes, Appl. Phys. Lett.,23, 139–141 (1973).

    Google Scholar 

  6. L. I. Gudzenko, I. S. Lakoba, Yu. I. Syts'ko, and S. I. Yakovlenko, Preprint IEA-2912, Moscow, 1977 (see also Usp. Fiz. Nauk,126, 699–700 (1978).

  7. V. V. Evstigneev and S. S. Filippov, Preprint No. 5, Inst. Mech. Problems, USSR Acad. Sci. (1974).

  8. B. Rosen, Tables de Constantes et Données Numériques, Vol. 17, Pergamon Press (1970), p. 199.

  9. Y. S. Kim and R. G. Gordon, J. Chem. Phys.,61, 1–15 (1974).

    Google Scholar 

  10. R. S. Mulliken, J. Chem. Phys.,52, 5170–5180 (1970).

    Google Scholar 

  11. C. W. Gear, Comment. ICM,14, 176–182 (1971).

    Google Scholar 

  12. Y.-J. Shin, M. A. Biondi, and D. P. Sipler, Phys. Rev.,A15, 494–498 (1977).

    Google Scholar 

  13. R. L. Fitzwilson and L. M. Chanin, J. Appl. Phys.,44, 5337–5346 (1973).

    Google Scholar 

  14. I. P. Zapesochnyi and P. V. Fel'tsan, Opt. Spektrosk.,20, 521–522 (1966).

    Google Scholar 

  15. A. W. Johnson and J. B. Gerardo, Chem. Phys.,59, 1738–1741 (1973).

    Google Scholar 

  16. L. A. Vainshtein, I. I. Sobel'man, and E. A. Yukov, Cross Sections for the Excitation of Atoms and Ions by Molecules [in Russian], Nauka, Moscow (1973).

    Google Scholar 

  17. H. A. Koehler, L. J. Ferderber, D. L. Redhead, and R. J. Ebert, Phys. Rev.,A9, 768–781 (1974).

    Google Scholar 

  18. L. S. Frost and A. V. Phelps, Phys. Rev.,136, 1538–1541 (1964).

    Google Scholar 

  19. H. A. Koehler, L. J. Ferderber, R. L. Redhead, and P. J. Ebert, Appl. Phys. Lett.,21, 198–200 (1972).

    Google Scholar 

  20. W. M. Hughes, J. Shannon, A. Kolb, et al., Appl. Phys. Lett.,23, 385–387 (1973).

    Google Scholar 

  21. G. R. Fournier, Opt. Commun.,13, 385–389 (1975).

    Google Scholar 

  22. C. W. Werner, E. W. George, P. W. Hoff, and C. K. Rhodes, IEEE J. Quantum Electron.,QE-13, 769–783 (1977).

    Google Scholar 

Download references

Authors

Additional information

Translated from Trudy Ordena Fizicheskogo Instituta im. P. N. Lebedeva, Vol. 120, pp. 30–43, 1980.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gudzenko, L.I., Lakoba, I.S., Petrushchenko, G.Y. et al. “Small” models of relaxation of a dense inert-gas plasma. J Russ Laser Res 3, 201–213 (1982). https://doi.org/10.1007/BF01134144

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01134144

Keywords

Navigation