Skip to main content
Log in

Viscosity, thermal conductivity, and surface tension of high-temperature melts

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

High-temperature melts are substances which are solids at room temperature and liquids at high temperatures. They include liquid metals, molten salts, and other melts such as molten semiconductor materials. Although they show scientifically interesting behavior and have industrially important characteristics, the thermophysical properties of these substances at high temperature are not sufficiently known due to experimental difficulties. Many melts show strong chemical activity and therefore are corrosive to materials of container and sensors. Applicable sensors are limited also because of the high temperature and the electrical conductivity of melts. In this paper the present status of available data for the viscosity, the thermal conductivity, and the surface tension of high-temperature melts is reviewed. Limited experimental information is available and these properties are difficult to predict theoretically. The transport properties are important for predicting heat transfer and flow patterns. For the prediction of the behavior of melts under microgravity condition, the temperature dependence of the surface tension plays a major role.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Nagashima,Appl. Mech. Rev. 41:113 (1988).

    Google Scholar 

  2. Properties of Electroslag, A report (The Iron and Steel Institute of Japan, 1979) (in Japanese).

  3. Survey of References on Physico-Chemical Properties of Molten Metals, Alloys, Slags and Molten Salts, A report of Committee 140 of the Japan Society for Promotion of Sciences (1982).

  4. K. Furukawa and H. Ohno,Data Books for Molten Materials. I. Molten LiF-BeF 2 System (Japan Nuclear Energy Information Center, 1980).

  5. Data Books for Molten Materials. II. HTS (Japan Nuclear Energy Information Center, 1988).

  6. G. J. Janz,Proc. 4th Jap. Symp. Thermophys. Prop., Yokohama, (1983), p. 199; G. J. Janz,High. Temp. Sci. 19:173 (1985). Other references are listed also in Ref. 1.

  7. T. Ito, K. Minami, and A. Nagashima, Paper presented at 10th Symp. Thermophys. Prop., Gaithersburg, Md. (1988).

  8. R. W. Ohse (ed.),Handbook of Thermodynamic and Transport Properties of Alkali Metals (Blackwell, Oxford, 1985).

    Google Scholar 

  9. K. Kamimoto and T. Hibiya,Appl. Phys. Lett. 50:1249 (1987).

    Google Scholar 

  10. V. M. Glazov, S. N. Chizhevskaya, and N. N. Glagoleva,Liquid Semiconductors (Plenum, New York, 1988), 68.

    Google Scholar 

  11. S. Ozawa, M. Eguchi, T. Fujii, and T. Fukuda,Appl. Phys. Lett. 51:197 (1987).

    Google Scholar 

  12. Y. Nagasaka and A. Nagashima, Paper presented at 10th Symp. Thermophys. Prop., Gaithersburg, Md. (1988).

  13. V. I. Fedorov and V. I. Machuev,Teplofiz. Vys. Temp. 8:912 (1970).

    Google Scholar 

  14. P. V. Polyakov and E. M. Gildebrandt,Teplofiz. Vys. Temp. 12:892 (1974).

    Google Scholar 

  15. G. P. Bystrai, V. N. Desyatnik, and V. A. Zlokazov,Atom. Energ. 36:517 (1974).

    Google Scholar 

  16. J. McDonald and H. T. Davis,Phys. Chem. Liq. 2:119 (1971).

    Google Scholar 

  17. Y. Nagasaka and A. Nagashima,Int. J. Thermophys. (in press).

  18. H. Bloom, A. Doroszkowski, and S. B. Tricklebank,Aust. J. Chem. 18:1171 (1965).

    Google Scholar 

  19. J. McDonald and H. T. Davis,J. Phys. Chem. 74:725 (1970).

    Google Scholar 

  20. T. Omotani, Y. Nagasaka, and A. Nagashima,Int. J. Thermophys. 3:17 (1982).

    Google Scholar 

  21. T. Omotani and A. Nagashima,J. Chem. Eng. Data 29:1 (1984).

    Google Scholar 

  22. A. R. Regel, I. A. Smirnov, and E. V. Shadrichev,Phys. Stat. Sol. (a)5:13 (1971).

    Google Scholar 

  23. B. Sundqvist and G. Backstrom,Rev. Sci. Instrum. 47:177 (1976).

    Google Scholar 

  24. V. M. Glazov, S. N. Chizhevskaya, and N. N. Glagoleva,Liquid Semiconductors (Plenum, New York, 1988), p. 25.

    Google Scholar 

  25. M. Takeuchi et al.,Proc. 1983 ASME-JSME Therm. Eng. Joint Conf., Hawaii, Vol. 3 (1983), p. 341.

  26. L. A. Pirog,Izv. Vyssh. Uchebn. Zaved. Tsvetn. Metall. 6:109 (1986).

    Google Scholar 

  27. A. Passerone, R. Sangiorgi, and G. Caracciolo,J. Chem. Thermodyn. 15:971 (1983).

    Google Scholar 

  28. L. Goumiri and J. C. Joud,Acta Metall 30:1397 (1982).

    Google Scholar 

  29. S. C. Hardy,J. Crystal Growth 69:456 (1984).

    Google Scholar 

  30. M. Murase, H. Matsubara, Y. H. Mori, and A. Nagashima,Trans. JSME 51B:2638 (1985).

    Google Scholar 

  31. B. J. Keene,Surf. Interface Anal. 10:367 (1987).

    Google Scholar 

  32. T. P. Kolesnikova,Izv. VUZ Chern. Metal. 9:14 (1960).

    Google Scholar 

  33. B. C. Allen,Handbook of Thermodynamic and Transport Properties of Alkali Metals, R. W. Ohse, ed. (Blackwell, Oxford, 1985), pp. 691–700.

    Google Scholar 

  34. T. Iida and R. L. Guthrie,The Physical Properties of Liquid Metals (Oxford, 1988), pp. 109–146.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagashima, A. Viscosity, thermal conductivity, and surface tension of high-temperature melts. Int J Thermophys 11, 417–432 (1990). https://doi.org/10.1007/BF01133571

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01133571

Key words

Navigation