Skip to main content
Log in

Experimental apparatus for measuring the thermal diffusivity of pure fluids at high temperatures

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Dynamic light scattering represents a suitable method for measuring the thermal diffusivity of optically transparent fluids. The classic application of the method is the immediate vicinity around the critical point due to its dependence upon the intensity of scattered light and its high sensitivity to undesired light scattering. By means of subsequent modifications of the experimental setup, we have been able to expand this region of applicability over the last 12 years and could systematically investigate numerous substances and their binary mixtures within a temperature range of 280 K<T<350 K. Our planned investigation of fluids suitable for ORC-HP-technology necessitates performing measurements at higher temperatures and pressures. The experimental apparatus newly designed for this purpose is capable of sustaining a relatively high temperature constance at temperatures up to 700 K. Factors restricting the measurable range of state and their influence on the design of the sample cell are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Michels, J. V. Sengers, and P. S. Van der Gulik,Physica 28:1216 (1962).

    Google Scholar 

  2. C. E. Pittman, L. H. Cohen, and H. Meyer,J. Low Temp. Phys. 46:115 (1982).

    Google Scholar 

  3. A. Acton and K. Kellner,Physica 103B:212 (1981).

    Google Scholar 

  4. R. C. Prasad and J. E. S. Venart,Int. J. Thermophys. 5:367 (1984).

    Google Scholar 

  5. L. A. Weber,Int. J. Thermophys. 3:117 (1982).

    Google Scholar 

  6. R. Tufeu and B. Le Neindre,Int. J. Thermophys. 8:283 (1987).

    Google Scholar 

  7. R. Tufeu, D. Y. Ivanov, Y. Garrabos, and N. Le Neindre,Ber. Bunsenges. Phys. Chem. 88:442 (1984).

    Google Scholar 

  8. H. Becker and U. Grigull,Wärme-Stoffübertragung 11:9 (1978).

    Google Scholar 

  9. N. C. Ford and G. B. Benedek,Phys. Rev. Lett. 15:649 (1965).

    Google Scholar 

  10. G. B. Benedek,French Phys. Soc. 49 (1969).

  11. P. Braun, D. Hammer, W. Tscharnuter, and P. Weinzierl,Phys. Lett. A 32:390 (1970).

    Google Scholar 

  12. G. T. Feke, J. B. Lastovka, G. B. Benedek, K. H. Langley, and P. B. Elterman,Opt. Comm. 7:13 (1973).

    Google Scholar 

  13. H. L. Swinney and H. Z. Cummins,Phys, Rev. 171:152 (1968).

    Google Scholar 

  14. B. Maccabee and J. A. White,Phys. Rev. Lett. 27:495 (1971).

    Google Scholar 

  15. D. L. Henry, H. L. Swinney, and H. Z. Cummins,Phys. Rev. Lett. 25:1170 (1970).

    Google Scholar 

  16. B. J. Ackerson and G. C. Straty,J. Chem. Phys. 69:1207 (1978).

    Google Scholar 

  17. W. Grabner, F. Vesely, and G. Benesch,Phys. Rev. A 18:2307 (1978).

    Google Scholar 

  18. R. F. Chang and T. Doiron,Proc. 8th Symp. Thermophys. Prop., Vol. 1, J. V. Sengers, ed. (Am. Soc. Mech. Eng., New York, 1982), p. 458.

    Google Scholar 

  19. R. Tufeu, A. Letaief, and B. Le Neindre,Proc. 8th Symp. Thermophys. Prop., Vol. 1, J. V. Sengers, ed. (Am. Soc. Mech. Eng., New York, 1982), p. 451.

    Google Scholar 

  20. E. Reile, P. Jany, and J. Straub,Wärme-Stoffübertragung 18:99 (1984).

    Google Scholar 

  21. P. Jany and J. Straub,Int. J. Thermophys. 8:165 (1987).

    Google Scholar 

  22. P. Jany and J. Straub,Chem. Eng. Comm. 57:67 (1987).

    Google Scholar 

  23. E. Reile and J. Straub,Proc. 8th Symp. Thermophys. Prop., Vol. 1, J. V. Sengers, ed. (Am. Soc. Mech. Eng., New York, 1982), 463.

    Google Scholar 

  24. J. V. Sengers,Ber. Bunsenges. Phys. Chem. 74:234 (1972).

    Google Scholar 

  25. L. P. Kadanoff and J. Swift,Phys. Rev. 166:89 (1968).

    Google Scholar 

  26. J. V. Sengers and P. H. Keyes,Phys. Rev. Lett. 26:70 (1971).

    Google Scholar 

  27. P. Jany,Die Temperaturleitfähigkeit reiner Fluide im weiten Zustandsbereich um den kritischen Punkt, Thesis (Technical University Munich, Munich, 1986).

    Google Scholar 

  28. VDI-Gesellschaft Energietechnik,ORC-HP-Technology (VDI-Verlag, Düsseldorf, 1984).

    Google Scholar 

  29. M. R. Moldover, J. V. Sengers, R. W. Gammon, and R. J. Hocken,Rev. Mod. Phys. 51:79 (1979).

    Google Scholar 

  30. D. M. Kim, D. L. Henry, and R. Kobayashi,Phys. Rev. A 10:1808 (1974).

    Google Scholar 

  31. C. M. Sorensen, R. C. Mockler, and W. J. O'Sullivan,Phys. Rev. A 16:365 (1977).

    Google Scholar 

  32. K. Kawasaki,Am. Phys. 61:1 (1970).

    Google Scholar 

  33. C. M. Sorensen, R. C. Mockler, and W. J. O'Sullivan,Phys. Rev. Lett. 40:777 (1978).

    Google Scholar 

  34. H. C. Burstyn and J. V. Sengers,Phys. Rev. A 27:1071 (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kruppa, B., Jany, P. & Straub, J. Experimental apparatus for measuring the thermal diffusivity of pure fluids at high temperatures. Int J Thermophys 9, 911–921 (1988). https://doi.org/10.1007/BF01133259

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01133259

Key words

Navigation