Skip to main content
Log in

Some classification problems in linear dynamic system theory

  • Control Theory
  • Published:
Computational Mathematics and Modeling Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literature Cited

  1. H. Kraft, Geometrical Methods in Invariant Theory [Russian translation], Mir, Moscow (1987).

    Google Scholar 

  2. T. Springer, Invariant Theory [Russian translation], Mir, Moscow (1981).

    Google Scholar 

  3. IEEE Transactions on Automatic Control, Special Issue on System Identification and Time Series Analysis,AC-19 (Dec. 1974).

  4. A. Tannenbaum, Invariance and System Theory: Algebraic and Geometric Aspects, Lect. Notes Math., vol. 845, Springer, Berlin (1981).

    Google Scholar 

  5. D. Mumford and J. Fogarty, Geometric Invariant Theory, 2nd enlarged ed., Springer, Berlin (1982).

    Google Scholar 

  6. N. I. Osetinskii, ‘On some problems of geometrical invariant theory of linear stationary dynamic systems,’ in: Theory of Complex Systems and Methods of Their Modeling, Proceedings of a Seminar [in Russian], VNIISI, Moscow (1983), pp. 34–41.

    Google Scholar 

  7. V. E. Belozerov and N. I. Osetinskii, ‘Invariants and canonical forms of one class of linear controlled systems,’ in: Theory of Complex Systems and Methods of Their Modeling, Proceedings of a Seminar [in Russian], VNIISI, Moscow (1984), pp. 18–25.

    Google Scholar 

  8. D. Hinrichsen and D. Pratzel-Wolters, ‘State and input transformations for reachable systems,’ Cont. Math.,47, 217–239 (1985).

    Google Scholar 

  9. N. I. Osetinskii and V. É. Khatutskii, ‘On classification of linear controlled systems,’ in: Theory of Complex Systems and Methods of Their Modeling, Proceedings of a Seminar [in Russian], VNIISI, Moscow (1985), pp. 52–60.

    Google Scholar 

  10. A. Tannenbaum, ‘On the stabilizer subgroup of a pair of matrices,’ Linear Algebra and Its Applications,50, 527–544 (1983).

    Google Scholar 

  11. D. Hinrichsen and D. Pratzel-Wolters, ’Wild quiver in linear systems theory,’ in: Control Theory Centre Report No. 130, Univ. of Warwick (1985).

  12. S. Friedland, ’Simultaneous similarity of matrices,’ Adv. Math.,50, 189–266 (1983).

    Google Scholar 

  13. M. A. Arbib and E. J. Mains, ’Fundamentals of system theory: decomposable systems,’ in: Mathematical Methods in System Theory [Russian translation], Mir, Moscow (1979), pp. 7–48.

    Google Scholar 

  14. I. R. Shafarevich, Fundamentals of Algebraic Geometry [in Russian], Nauka, Moscow (1972).

    Google Scholar 

  15. C. Procesi, ’The invariant theory ofn ×n matrices,’ Adv. Math.,19, 306–381 (1976).

    Google Scholar 

  16. P. E. Newstead, Introduction to Moduli Problems and Orbit Spaces, Springer, Berlin (1978).

    Google Scholar 

Download references

Authors

Additional information

Translated from Teoriya Slozhnykh Sistem i Metody Ikh Modelirovaniya, No. 1, pp. 58–76, Vsesoyuznyi Nauchno-Issledovatel'skii Institut Sistemnykh Issledovanii, Moscow (1988).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Osetinskii, N.I. Some classification problems in linear dynamic system theory. Comput Math Model 3, 366–382 (1992). https://doi.org/10.1007/BF01133064

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01133064

Keywords

Navigation