Skip to main content
Log in

Tritium separation from light and heavy water by bipolar electrolysis

  • Papers
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Using multiple bipolar electrolytic separation of hydrogen isotopes with Pd-25%Ag electrodes, the mathematical feasibility of this method for tritium separation was shown and experimentally verified. Separation factors were measured on single bipolar electrodes and were found to be approximately equivalent to those associated with individual ordinary electrolytic systems. Multibipolar separations were experimentally achieved in single cascaded cells in which each bipolar electrode was of equal area to others in a series arrangement. Factors measured for multibipolar H-D separation were close to the values measured in single-stage cell measurements; for H-T separation, interstage leakage reduced the measured separation factor. However, in both cases separation of sufficient magnitude was achieved to show feasibility for real application to the extraction of tritium from large-volume systems at high current density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. H. K. Rae (editor), ‘Separation of Hydrogen Isotopes’, American Chemical Society Symposium Series 68, Washington DC (1978).

  2. O. N. Salmon, ‘The Electrolytic Separation of Hydrogen Isotopes by Migration Through a Palladium Membrane’,Report KAPL-1272, Knolls Atomic Power Laboratory (General Electric Co.), Schenectady, New York, (June 25 1956).

    Google Scholar 

  3. F. T. Barr and W. P. Drews,Chem. Eng. Prog. 56 (1960) 49.

    Google Scholar 

  4. D. M. Drazic, Progress Report to EPA from the Faculty of Technology, University of Belgrade, Belgrade, Yugoslavia (1973).

    Google Scholar 

  5. S. V. Ribnikar and J. D. Pupezin, ‘Possibilities of Tritium Removal from Waste Waters of Pressurized Water Reactors and Fuel Reprocessing Plants’, presented at the 13th AEC Air Cleaning Conference, San Francisco, California (1974).

  6. F. B. Longtin, private communication.

  7. D. W. Ramey, M. Petek, R. D. Taylor, E. H. Kobisk, J. O. Ramey and C. A. Sampson,Report ORNL-5581, Oak Ridge National Laboratory, Tennessee (1979).

    Google Scholar 

  8. D. W. Ramey, M. Petek and E. H. Kobisk,Proc. Symp. Waste Management and Fuel Cycles, Tucson Arizona (edited by R. G. Post) (1978) p. 306.

  9. J. Bigeleisen,Proc. Int. Symp. IAEA, Vol. I (1961) p. 161.

    Google Scholar 

  10. L. P. Roy,Can. J. Chem. 40 (1962) 1452.

    Google Scholar 

  11. S. Kaufman and W. F. Libby,Phys. Rev. 93 (1954) 1337.

    Google Scholar 

  12. B. Dandapani and M. Fleischmann,J. Electroanal. Chem. 39 (1972) 323.

    Google Scholar 

  13. H. Brodowsky, H. Gibmeyer and E. Wicke,Z Phys. Chem. N.F. 49 (1966) 222.

    Google Scholar 

  14. J. B. Hunter,Amer. Chem. Soc., Div. Petrol. Chem. 8 (1963) B49.

    Google Scholar 

  15. E. T. Serfass, ‘Activated Surfaces Useful in the Production of Hydrogen’, US Patent 3448 035 (1966).

  16. M. Fleischmann and J. N. Hiddleston,J. Sci. Instrum. (Series 2)1 (1968) 667.

    Google Scholar 

  17. H. Brodowsky and E. Poeschel,Z. Phys. Chem. N.F. 44 (1965) 143.

    Google Scholar 

  18. A. Kussner,ibid 36 (1963) 383.

    Google Scholar 

  19. E. Wicke and G. Holleck,ibid 46 (1965) 123.

    Google Scholar 

  20. E. Wicke and H. Brodowsky, ‘Topics in Applied Physics: Hydrogen in Metals II’, Vol. 29, Springer-Verlag, Berlin (1978) p. 73.

    Google Scholar 

  21. H. Brodowsky and E. Wicke,Technical Bulletin, Engelhard Industries Inc., Menlo Park, New Jersey7 (1966) 41.

    Google Scholar 

  22. B. E. Conway,Proc. Roy. Soc. A256 (1960) 128.

    Google Scholar 

  23. J. O'M Bockris and S. Srinivasan,J. Electrochem. Soc. 111 (1964) 844.

    Google Scholar 

  24. Idem, ibid 111 (1964) 853.

    Google Scholar 

  25. Idem, ibid 111 (1964) 858.

    Google Scholar 

  26. P. W. T. Lu and S. Srinivasan,J. Appl. Electrochem. 9 (1979) 269.

    Google Scholar 

  27. I. N. Maksimova and V. F. Yushkevich,Russian J. Phys. Chem. 37 (1963) 475.

    Google Scholar 

  28. H. R. C. Pratt, ‘Countercurrent Separation Processes’, Elsevier, Amsterdam (1967).

    Google Scholar 

  29. D. W. Ramey, M. Petek, R. D. Taylor, P. W. Fischer, E. H. Kobisk, J. Ramey and C. A. Sampson,Separation Sci. Technol. 15 (1980) 405.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petek, M., Ramey, D.W. & Taylor, R.D. Tritium separation from light and heavy water by bipolar electrolysis. J Appl Electrochem 11, 477–488 (1981). https://doi.org/10.1007/BF01132436

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01132436

Keywords

Navigation