Skip to main content
Log in

The solubility product of crystalline ferric selenite hexahydrate and the complexation constant of FeSeO +3

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The aqueous solubility of Fe2(SeO3)3·6H2O(c) was studied in deionized water adjusted to a range in pH values from 0.77 to 5.1 and in Na2SeO3 solutions ranging in concentrations from 0.0002 to 0.02 mol-dm−3. The studies were conducted from both the undersaturation and oversaturation directions, with equilibration periods ranging from 7 to 1725 days. Stoichiometric dissolution of the solid was observed in solutions with pH values up to nearly 4. In general, concentrations of both Se and Fe decreased as pH increased from 1 to 4. Analyses of the equilibrated suspensions confirmed the equilibrium solid to be Fe2(SeO3)3·6H2O(c) and the aqueous Se to be selenite. Pitzer's ion-interaction model was used with selected ion pairs to interpret the solubility data. The logarithm of the solubility product of ferric selenite

$$Fe_2 (SeO_3 )_3 .6H_2 O(c) \begin{array}{*{20}c} \to \\ \leftarrow \\ \end{array} 2Fe^{3 + } + 3SeO_3^{2 - } + 6H_2 O$$

was found to be −41.58±0.11. This value is less than any reported in the literature for a ferric selenite by more than 10 orders of magnitude. The solubility data and calculations show an extremely strong interaction between aqueous Fe3+ and SeO 2−3 ; interpretation of these data requires the inclusion of FeSeO +3 i.e.

$$Fe^{3 + } + SeO_3^{2 - } \begin{array}{*{20}c} \to \\ \leftarrow \\ \end{array} FeSeO_3^ + , log K = 11.15 \pm 0.11$$

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. H. Howard, Ph.D. Dissertation, Standford University, California, 1969.

  2. P. J. Duns, D. R. Pecker, and B. Darko Sturman,Canadian Mineralogist 16, 605 (1978).

    Google Scholar 

  3. D. Rai, S. V. Mattigod, and D. A. Moore,Mat. Res. Bull. 23, 1621 (1988).

    Google Scholar 

  4. V. G. Chukhlantsev and G. P. Tomashevsky,J. Anal. Chem. USSR 12, 303 (1957).

    Google Scholar 

  5. D. Rai, R. J. Serne, and D. A. Moore,Soil. Sci. Soc. Am. J. 44, 490 (1980).

    Google Scholar 

  6. D. Rai, A. R. Felmy, and D. A. Moore,J. Solution Chem. 20, 1169 (1991).

    Google Scholar 

  7. G. B. Naumov, B. N. Ryzenko, and I. L. Khodakovsky,Handbook of Thermodynamic Data NTIS PB 226-722, (National Technical Information Service, Springfield, Virginia, 1974).

    Google Scholar 

  8. L. G. Sillen, and A. E. Martell,Stability Constants of Metal-Ion Complexes Special Publication No. 17, (Chemical Society, London, 1964).

    Google Scholar 

  9. J. H. Howard III,Geochim. Cosmochim. Acta 41, 1665 (1977).

    Google Scholar 

  10. H. R. Geering, E. E. Cary, L. H. P. Jones, and W. H. Allaway,Soil Sci. Soc. Am. Proc. 32, 35 (1968).

    Google Scholar 

  11. M. A. Elrashidi, D. C. Adriano, S. M. Workman, and W. L. Lindsay,Soil Sci. 144, 141 (1987).

    Google Scholar 

  12. D. Rai, J. M. Zachara, A. P. Schwab, R. L. Schmidt, D. C. Girvin, and J. E. Rogers,Chemical Attenuation Rates, Coefficients, and Constants in Leachate Migration, Vol. 1, “A Critical Review” EPRI EA-3356, (Electric Power Research Institute, Palo Alto, California, 1984).

    Google Scholar 

  13. S. Hamada, Y. Ishikawa, and T. Shirai,J. Chem. Soc. Japan 86, 1042 (1965). (Quoted by Sillen and Martell in Ref. 15).

    Google Scholar 

  14. L. G. Sillen and A. E. Martell,Stability Constants of Metal-Ion Complexes Supplement No. 1, Special Publication No. 25, (Chemical Society, London, 1971).

    Google Scholar 

  15. R. M. Smith and A. E. Martell,Critical Stability Constants, Vol. 4, “Inorganic Complexes”, (Plenum Press, New York, 1976).

    Google Scholar 

  16. D. Rai,Radiochim. Acta 35, 97 (1984).

    Google Scholar 

  17. A. R. Felmy, GMIN,A Computerized Chemical Equilibrium Model Using a Constrained Minimization of the Gibbs Free Energy, (Pacific Northwest Laboratory, Richland, Washington, 1990).

    Google Scholar 

  18. D. D. Wagman, W. H. Evans, V. B. Parker, R. H. Schumm, I. Halow, S. M. Bailey, K. L. Churney, and R. L. Nuttall,J. Phys. Chem. 11, Supplement 2 (1982).

  19. C. E. Harvie, N. Moeller, and J. H. Weare,Geochim. Cosmochim. Acta 48, 723 (1984).

    Google Scholar 

  20. K. S. Pitzer,J. Phys. Chem. 77, 268 (1973).

    Google Scholar 

  21. K. S. Pitzer,Activity Coefficients in Electrolyte Solutions, Vol. 1, (CRC Press, Boca Raton, Florida, 1979), Chap. 7, pp. 157–208.

    Google Scholar 

  22. D. A. Dzombak and F. M. M. Morel,Surface Complexation Modeling: Hydrous Feric Oxide, (Wiley, New York, 1990).

    Google Scholar 

  23. J. M. Zachara, D. Rai, D. A. Moore, G. D. Turner, and A. R. Felmy,Chemical Attenuation Reactions of Selenium, EPRI TR-103535, (Electric Power Research Institute, Palo Alto, California).

  24. W. Stumm, R. Kummert, and L. SiggCroat. Chem. Acta. 53, 291 (1980).

    Google Scholar 

  25. W. Stumm and J. J. Morgan,Acquatic Chemistry, 2nd edn., (Wiley, New York, 1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rai, D., Felmy, A.R. & Moore, D.A. The solubility product of crystalline ferric selenite hexahydrate and the complexation constant of FeSeO +3 . J Solution Chem 24, 735–752 (1995). https://doi.org/10.1007/BF01131042

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01131042

Key Words

Navigation