Skip to main content
Log in

Deformation mechanisms in negative Poisson's ratio materials: structural aspects

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Poisson's ratio in materials is governed by the following aspects of the microstructure: the presence of rotational degrees of freedom, non-affine deformation kinematics, or anisotropic structure. Several structural models are examined. The non-affine kinematics are seen to be essential for the production of negative Poisson's ratios for isotropic materials containing central force linkages of positive stiffness. Non-central forces combined with pre-load can also give rise to a negative Poisson's ratio in isotropic materials. A chiral microstructure with noncentral force interaction or non-affine deformation can also exhibit a negative Poisson's ratio. Toughness and damage resistance in these materials may be affected by the Poisson's ratio itself, as well as by generalized continuum aspects associated with the microstructure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. S. Lakes,Science 235 (1987) 1038.

    Google Scholar 

  2. E. A. Friis, R. S. Lakes andJ. B. Park,J. Mater. Sci. 23 (1988) 4406.

    Google Scholar 

  3. R. S. Lakes, in “Developments in Mechanics”, Vol. 14, Proceedings, 20th Midwest Mechanics Conference, Purdue University, 31 August–2 September 1987, pp. 758–63.

  4. A. W. Lipsett andA. I. Beltzer,J. Acoust. Soc. Amer. 84 (1988) 2179.

    Google Scholar 

  5. A. Freedman,J. Sound Vibration 137 (1990) 209.

    Google Scholar 

  6. C. P. Chen andR. S. Lakes,J. Cellular Polym. 8 (1989) 343.

    Google Scholar 

  7. L. J. Gibson, M. F. Ashby, G. S. Schajer andC. I. Robertson,Proc. Roy. Soc. Lond. A382 (1982) 25.

    Google Scholar 

  8. F. Homand-Etienne andR. Houpert,Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 26 (1989) 125.

    Google Scholar 

  9. A. Nur andG. Simmons,Earth Planet. Sci. Lett. 7 (1969) 183.

    Google Scholar 

  10. B. D. Caddock andK. E. Evans,J. Phys. D Appl. Phys. 22 (1989) 1877.

    Google Scholar 

  11. K. E. Evans andB. D. Caddock,ibid. 22 (1989) 1883.

    Google Scholar 

  12. C. T. Herakovich,J. Compos. Mater. 18 (1985) 447.

    Google Scholar 

  13. S. W. Tsai andH. T. Hahn, “Introduction to composite materials” (Technomic, Lancaster, PA, 1980).

    Google Scholar 

  14. M. Miki andY. Morotsu,JSME Int. J. 32 (1989) 67.

    Google Scholar 

  15. A. M. Garber,Aerospace Engng 22 (1963) 126.

    Google Scholar 

  16. N. Bettenbouche, G. A. Saunders, E. F. Lambson andW. Hönle,J. Phys. D. Appl. Phys. 22 (1989) 670.

    Google Scholar 

  17. M. Ya. Popereka andV. G. Balagurov,Sov. Phys. Solid State 11 (1970) 2938.

    Google Scholar 

  18. R. F. Almgren,J. Elasticity 15 (1985) 427.

    Google Scholar 

  19. K. E. Evans,J. Phys. D Appl. Phys. 22 (1989) 1870.

    Google Scholar 

  20. G. Simmons andH. Wang, “Single crystal elastic constants and calculated aggregate properties: a handbook”, 2nd Edn (MIT Press, Cambridge, 1971).

    Google Scholar 

  21. J. H. Weiner, “Statistical Mechanics of Elasticity” (Wiley, NY, 1983).

    Google Scholar 

  22. S. P. Timoshenko, “History of Strength of Materials” (Dover, NY, 1983).

    Google Scholar 

  23. A. E. H. Love, “A Treatise on the Mathematical Theory of Elasticity”, 4th Edn (Dover, NY, 1944).

    Google Scholar 

  24. J. F. Nye, “Physical Properties of Crystals” (Clarendon Press, Oxford, 1976).

    Google Scholar 

  25. L. J. Gibson andM. Ashby, “Mechanics of cellular solids” (Pergamon, Oxford, New York, 1988).

    Google Scholar 

  26. A. G. Kolpakov,Prikl. Mat. Mekh. 59 (1985) 969.

    Google Scholar 

  27. K. Berglund,Arch. Mech. 29 (1977) 383.

    Google Scholar 

  28. R. J. Bathurst andL. Rothenburg,Int. J. Engng Sci. 26 (1988) 373.

    Google Scholar 

  29. T. R. Tauchert,Recent Adv. Engng Sci. 5 (1970) 325.

    Google Scholar 

  30. K. W. Wojciechowski,Phys. Lett. A 137 (1989) 60.

    Google Scholar 

  31. E. Cosserat andF. Cosserat, “Théorie des Corps Deformables” (Hermann, Paris, 1909).

    Google Scholar 

  32. A. C. Eringen, in “Fracture”, Vol.1 (Academic, New York, 1968) pp. 621–729.

    Google Scholar 

  33. S. Burns,Science 238 (1987) 551.

    Google Scholar 

  34. R. S. Lakes,ibid. 238 (1987) 551.

    Google Scholar 

  35. R. S. Lakes,Int. J. Solids Structures 22 (1986) 55.

    Google Scholar 

  36. R. S. Lakes andR. L. Benedict,Int. J. Engng Sci. 29 (1982) 1161.

    Google Scholar 

  37. R. D. Mindlin,Arch. Rational Mech. Anal. 16 (1964) 51.

    Google Scholar 

  38. A. C. Eringen, “Mechanics of micromorphic continua”, IUTAM symposium, “Mechanics of Generalized Continua”, edited by E. Kröner (Springer Verlag, 1968).

  39. J. L. Bleustein,Int. J. Solids Structures 2 (1960) 83.

    Google Scholar 

  40. S. C. Cowin,Q. J. Mech. Appl. Math. 37 (1984) 441.

    Google Scholar 

  41. E. D. Case,J. Mater. Sci. 19 (1984) 3702.

    Google Scholar 

  42. O. G. Ingles, I. K. Lee andR. C. Neil,Rock Mech. 5 (1973) 203.

    Google Scholar 

  43. S. Hirotsu,Macromol. 23 (1990) 903.

    Google Scholar 

  44. J. Cherfas,Science 247 (1990) 630.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lakes, R. Deformation mechanisms in negative Poisson's ratio materials: structural aspects. J Mater Sci 26, 2287–2292 (1991). https://doi.org/10.1007/BF01130170

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01130170

Keywords

Navigation