Skip to main content
Log in

Hydrogen capture in the swelling of steel

  • Articles
  • Published:
Soviet Atomic Energy Aims and scope

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literature Cited

  1. P. V. Gel'd (Held), R. A. Ryabov, and E. M. Kodes, Hydrogen and Imperfections of the Structure of Metals [in Russian], Metallurgiya, Moscow (1979).

    Google Scholar 

  2. K. Wilson, “Hydrogen trapping studies in fusion first wall materials,” IEEE Trans. Nucl. Sci.,NS26, No. 1, 1296 (1979).

    Google Scholar 

  3. W. Moller, “The behavior of hydrogen atoms implanted into metals,” Nucl. Instrum. Methods,209/210, part II, 773 (1983).

    Google Scholar 

  4. Yu. I. Archakov, Hydrogen-Induced Corrosion of Steel [in Russian], Metallurgiya, Moscow (1985).

    Google Scholar 

  5. J. Koutsky, K. Splichal, J. Otruba, et al., “The effect of hydrogen and radiation on Cr−Mo−V steel embrittlement,” in: Hydrogen Problems in Steels: Proc. 1st Int. Conf., Metals Park, Ohio, ASM (1982), pp. 291–296.

  6. Proc. on the Tritium Technology in Fission, Fusion, and Isotopic Applications, ANS Nat. Meeting (1980).

  7. Hydrogen Damage. A Discriminative Selection of Outstanding Articles and Papers from Scientific Literature, ASM Metals Park, Ohio (1979).

  8. E. A. Krasikov, I. V. Al'tovskii, and A. D. Amaev, “Diffusion of hydrogen in irradiated steel,” in: Soviet-American Seminar on Material Science for Thermonuclear Fusion [in Russian], I. V. Kurchatov Inst. of Atomic Energy, Moscow (1974), 16 p.

    Google Scholar 

  9. D. Brice and B. Doyle, “Steady state hydrogen transport in solids exposed to fusion reactor plasmas,” J. Nucl. Mater.,20, 230 (1984).

    Google Scholar 

  10. V. A. Kireev, Short Course of Physical Chemistry [in Russian], GNTIKhL, Moscow (1962).

    Google Scholar 

  11. I. P. Zasorin and P. S. Otstavnov, “The Representative Character of the Results of Radiation Research on Construction Materials,” Problems of Atomic Science and Technology, Series Physics of Radiation Instruments and Radiation Materials Science [in Russian], No. 5(33) (1984), pp. 67–68.

    Google Scholar 

  12. L. Mansur and M. Yoo, “Advances in the theory of swelling in irradiated metals and alloys,” J. Nucl. Mater.,85/86, 523 (1979).

    Google Scholar 

  13. M. Yoo and L. Mansur, “The inclusion of mobile helium in a rate theory model of void swelling,” J. Nucl. Mater.,85/86, 571 (1979).

    Google Scholar 

  14. F. Besenbacher, J. Bottiger, and S. Myers, “Deuterium trapping in helium-implanted nickel,” J. Appl. Phys.,53, No. 6, 3547 (1982).

    Google Scholar 

  15. N. Petch, “The lowering of fracture-stress due to surface adsorption,” Philos. Mag.,1, Ser. 8, No. 1, 331 (1956).

    Google Scholar 

  16. L. Mansur and W. Coghlan, “Mechanisms of helium interaction with radiation defects in metals and alloys,” J. Nucl. Mater.,119, 1 (1983).

    Google Scholar 

  17. J. Whitley, G. Kulcinski, P. Wilkes, et al., “Depth dependent void swelling rates in self-ion irradiated nickel,” J. Nucl. Mater.,85/86, 701 (1979).

    Google Scholar 

  18. Z. K. Saralidze and V. V. Slezov, “On the theory of the coalescence of pores with gas,” Fiz. Tverd. Tela, 7, No. 6, 1605 (1965).

    Google Scholar 

  19. K. Russell, “The theory of void nucleation in metals,” Acta Met.,26, No. 10, 1615 (1978).

    Google Scholar 

  20. K. Farrell and N. Packan, “A helium-induced shift in temperature dependence of swelling,” J. Nucl. Mater.,85/86, 683 (1979).

    Google Scholar 

  21. S. Picraux, “Defect trapping of gas atoms in metals,” Nucl. Instrum. Methods,182/183, 413 (1981).

    Google Scholar 

  22. T. Fujii, T. Hazama, H. Nakajima, et al., “A safety analysis on overlay disbonding of pressure vessels for hydrogen service,” in: Hydrogen Problems in Steels, Proc. 1st Int. Conf., ASM, Metals Park, Ohio (1982), pp. 361–368.

  23. S. A. Grashin, Yu. A. Sokolov, A. E. Gorodetskii, et al., Interaction of Hydrogen with the Material of the Discharge Chamber of the TM-4 Tokamak [in Russian], Preprint 3622/7 of the Institute of Atomic Energy, Moscow (1982).

  24. Yu. V. Martynenko and Yu. N. Yavlinskii, The Penetration of Hydrogen through the Wall of a Fusion Reactor [in Russian], Preprint 3767/8 of the Inst. of Atomic Energy, Moscow (1983).

  25. G. Nelson, “Hydrogenation plant steels,” in: Hydrogen Damage. A Discriminative Selection of Outstanding Articles and Papers from Scientific Literature, ASM, Metals Park, Ohio (1979), pp. 377–394.

    Google Scholar 

  26. F. Garner, “Recent insights on the swelling and creep of irradiated austenitic alloys,” J. Nucl. Mater.,122/123, 459 (1984).

    Google Scholar 

  27. N. Packan and K. Farrell, “Simulation of first wall damage: effects of the method of gas implantation,” J. Nucl. Mater.,85/86, 677 (1979).

    Google Scholar 

Download references

Authors

Additional information

Translated from Atomnaya Énergiya, Vol. 61, No. 3, pp. 183–186, September, 1986.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gorodetskii, A.E., Zakharov, A.P. & Chernikov, V.N. Hydrogen capture in the swelling of steel. At Energy 61, 699–704 (1986). https://doi.org/10.1007/BF01129872

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01129872

Keywords

Navigation