Advertisement

Continuum Mechanics and Thermodynamics

, Volume 2, Issue 4, pp 245–277 | Cite as

Energy methods for nonlinear stability in convection problems primarily related to geophysics

  • K. A. Lindsay
  • B. Straughan
Review artikel

Abstract

Applications of the theory of energy stability to problems in nonlinear convection are presented. Many topics are reviewed and examples of thermal, thermohaline and bio-convection are included. Specific sections address generalised energy methods, convection in a half-space, electrodynamic convection, surface tension driven convection, time-dependent flows such as gravity modulated convection and other topics.

Keywords

Convection Surface Tension Geophysics Specific Section Energy Stability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ahmadi, G.: Stability of a miropolar fluid layer heated from below. Int. J. Engng. Sci. 14 (1976) 81–89Google Scholar
  2. 2.
    Alts, T.; Hutter, K.: Continuum description of the dynamics and thermodynamics of phase boundaries between ice and water. Part 1. Surface balance laws and their interpretation in terms of three-dimensional balance laws averaged over the phase change boundary layer. J. Non-Equilib. Thermodyn. 13 (1988) 221–257Google Scholar
  3. 3.
    Alts, T.; Hutter, K.: Continuum description of the dynamics and thermodynamics of phase boundaries between ice and water. Part 2. Thermodynamics. J. Non-Equilib. Thermodyn. 13 (1988) 259–280Google Scholar
  4. 4.
    Alts, T.; Hutter, K.: Continuum description of the dynamics and thermodynamics or phase boundaries between ice and water. Part 3. Thermostatics and its consequences. J. Non-Equilib. Thermodyn. 13 (1988) 301–329Google Scholar
  5. 5.
    Alts, T.; Hutter, K.: Continuum description of the dynamics and thermodynamics of phase boundaries between ice and water. Part 4. On thermostatic stability and well-posedness. J. Non-Equilib. Thermodyn. 14 (1989) 1–22Google Scholar
  6. 6.
    Arnold, V. I.: Conditions for nonlinear stability of stationary plane curvilinear flows of an ideal fluid. Dokl. Akad. Nauk USSR 162 (1965) 975–978Google Scholar
  7. 7.
    Arnold, V. I.: Variational principle for three-dimensional steady-state flows of an ideal fluid. Prikl. Mat. Mekh. 29 (1965) 846–851Google Scholar
  8. 8.
    Arnold, V. I.: Sur un principe variationnel pour les écoulements des liquides parfaits et ses applications aux problémes de stabilité non lineaires. J. Mécanique 5 (1966) 29–43Google Scholar
  9. 9.
    Azouni, M. A.: Hysteresis loop in water between O°C and 4°C. Geophys. Astrophys. Fluid Dyn. 24 (1983) 137–142Google Scholar
  10. 10.
    Azouni, M. A.; Normand, C.: Thermoconvective instabilities in a vertical cylinder of water with maximum density effects. I. Experiments. Geophys. Astrophys. Fluid Dyn. 23 (1983) 209–222Google Scholar
  11. 11.
    Azouni, M. A.; Normand, C.: Thermoconvective instabilities in a vertical cylinder of water with maximum density effects. II. Theory: onset of convection. Geophys. Astrophys. Fluid Dyn. 23 (1983) 223–245Google Scholar
  12. 12.
    Bailey, P. B.; Chen, P. J.; Straughan, B.: Stabilisation criteria for thermally explosive materials. Acta Mech. 53 (1984) 73–79Google Scholar
  13. 13.
    Bénard, H.: Les tourbillons cellulaires dans une nappe liquide. Revue Gén. Sci. Pur. Appl. 11 (1900) 1261–1271; 1309–1328Google Scholar
  14. 14.
    Bernstein, I. B.; Frieman, E. A.; Kruskal, M. D.; Kulsrud, R. M.: An energy principle for hydrodynamic stability problems. Proc. Roy. Soc. London A 244 (1958) 17–40Google Scholar
  15. 15.
    Busse, F. H.: The stability of finite amplitude cellular convection and its relation to an extremum principle. J. Fluid Mech. 30 (1967) 625–649Google Scholar
  16. 16.
    Caltagirone, J. P.: Stability of a saturated porous layer subject to a sudden rise in surface temperature: comparison between the linear and energy methods. Q. Jl. Mech. Appl. Math. 33 (1980) 47–58Google Scholar
  17. 17.
    Carmi, S.: Energy stability of modulated flows. Phys. Fluids 17 (1974) 1951–1955Google Scholar
  18. 18.
    Castillo, J. L.; Velarde, M. G.: Buoyancy-thermocapillary instability: the role of interfacial deformation in one and two component fluid layers heated from below or above. J. Fluid Mech. 125 (1982) 463–474Google Scholar
  19. 19.
    Chandra, K.: Instability of fluids heated from below. Proc. Roy. Soc. London A 164 (1938) 231–242Google Scholar
  20. 20.
    Chandrasekhar, S.: The instability of a layer of fluid heated from below and subject to Coriolis forces. Proc. Roy. Soc. London A 217 (1953) 306–327Google Scholar
  21. 21.
    Chandrasekhar, S.: Hydrodynamic and hydromagnetic stability. New York: Dover Publications 1981Google Scholar
  22. 22.
    Chandrasekhar, S.: Ellipsoidal figures of equilibrium. New York: Dover Publications 1987Google Scholar
  23. 23.
    Childress, S.; Levandowsky, M.; Spiegel, E. A.: Pattern formation in a suspension of swimming micro-organisms: equations and stability theory. J. Fluid Mech. 63 (1975) 591–613Google Scholar
  24. 24.
    Cloot, A.; Lebon, G.: Marangoni convection induced by a nonlinear temperature dependent surface tension. J. Physique 47 (1986) 23–29Google Scholar
  25. 25.
    Datta, A. B.; Sastry, V. U. K.: Thermal instability of a horizontal layer of micropolar fluid heated from below. Int. J. Engng. Sci. 14 (1976) 631–637Google Scholar
  26. 26.
    Davis, S. H.: On the principle of exchange of stabilities. Proc. Roy. Soc. London A 310 (1969) 341–358Google Scholar
  27. 27.
    Davis, S. H.: Buoyancy-surface tension instability by the method of energy. J. Fluid Mech. 39 (1969) 347–359Google Scholar
  28. 28.
    Davis, S. H.: On the possibility of subcritical instabilities. In: Proc. IUTAM Symp., Herrenalb. Berlin Heidelberg New York: Springer-Verlag 1971Google Scholar
  29. 29.
    Davis, S. H.: Thermocapillary instabilities. Ann. Rev. Fluid Mech. 19 (1987) 403–435Google Scholar
  30. 30.
    Davis, S. H.; Homsy, G. M.: Energy stability theory for free-surface problems: buoyancy-thermocapillary layers. J. Fluid Mech. 98 (1980) 527–553Google Scholar
  31. 31.
    Davis, S. H.; von Kerczek, C.: A reformulation of energy stability theory. Arch. Rational Mech. Anal. 52 (1973) 112–117Google Scholar
  32. 32.
    Dennis, J. E.; Schnabel, R. B.: Numerical methods for unconstrained optimisation and nonlinear equations. Englewood Cliffs: Prentice-Hall 1983Google Scholar
  33. 33.
    Deo, B. J. S.; Richardson, A. T.: Generalised energy methods in electrohydrodynamic stability theory. J. Fluid Mech. 137 (1983) 131–151Google Scholar
  34. 34.
    Drazin, P. G.; Reid, W. H.: Hydrodynamic stability. Cambridge: Cambridge Univ. Press 1981Google Scholar
  35. 35.
    Dudis, J. J. K.; Davis, S. H.: Energy stability of the buoyancy boundary layer. J. Fluid Mech. 47 (1971) 381–403Google Scholar
  36. 36.
    Eringen, A. C.: Theory of thermomicrofluids. J. Math. Anal. Appl. 38 (1972) 480–496Google Scholar
  37. 37.
    Fearn, D. R.; Roberts, P. H.; Soward, A. M.: Convection stability and the dynamo: In: Energy stability and convection. Pitman Res. Notes Math. London: Longman 1988Google Scholar
  38. 38.
    Finucane, R. G.; Kelly, R. E.: Onset of instability in a fluid layer heated sinusoidally from below. Int. J. Heat Mass Transfer 19 (1976) 71–85Google Scholar
  39. 39.
    Franchi, F.; Straughan, B.: Convection, stability and uniqueness for a fluid of third grade. Int. J. Nonlinear Mech. 23 (1988) 377–384Google Scholar
  40. 40.
    Galdi, G. P.: Nonlinear stability of the magnetic Bénard problem via a generalised energy method. Arch. Rational Mech. Anal. 87 (1985) 167–186Google Scholar
  41. 41.
    Galdi, G. P.; Padula, M.: A new approach to energy theory in the stability of fluid motion. Arch. Rational Mech. Anal. (to appear).Google Scholar
  42. 42.
    Galdi, G. P.; Payne, L. E.; Proctor, M. R. E.; Straughan, B.: Convection in thawing subsea permafrost. Proc. Roy. Soc. London A 414 (1987) 83–102Google Scholar
  43. 43.
    Galdi, G. P.; Rionero, S.: Weighted energy methods in fluid dynamics and elasticity. Springer Lect. Notes Math. Vol. 1134.Google Scholar
  44. 44.
    Galdi, G. P.; Straughan, B.: Exchange of stabilities, symmetric and nonlinear stability. Arch. Rational Mech. Anal. 89 (1985) 211–228Google Scholar
  45. 45.
    Galdi, G. P.; Straughan, B.: A nonlinear analysis of the stabilising effect of rotation in the Bénard problem. Proc. Roy. Soc. London A 402 (1985) 257–283Google Scholar
  46. 46.
    George, J. H.; Gunn, R. D.; Straughan, B.: Patterned ground formation and penetrative convection in porous media. Geophys. Astrophys. Fluid Dyn. 46 (1989) 135–158Google Scholar
  47. 47.
    Gleason, K. J.; Krantz, W. B.; Caine, N.; George, J. H.; Gunn, R. D.: Geometrical aspects of sorted patterned ground in recurrently frozen soil. Science 232 (1986) 216–220Google Scholar
  48. 48.
    Gill, A. E.: The boundary-layer regime for convection in a rectangular cavity. J. Fluid Mech. 26 (1966) 515–536Google Scholar
  49. 49.
    Gill, A. E.: A proof that convection in a porous vertical slab is stable. J. Fluid Mech. 35 (1969) 545–547Google Scholar
  50. 50.
    Harrison, W. D.: Formulation of a model for pure water convection in thawing subsea permafrost. Mitteilungen der Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie 57 (1982) ETH Zürich.Google Scholar
  51. 51.
    Harrison, W. D.; Osterkamp, T. E.: Measurements of the electrical conductivity of interstitial water in subsea permafrost. In: Proc. 4th Canadian Permafrost Conf. Canada: National Res. Council 1982Google Scholar
  52. 52.
    Hills, R. N.; Roberts, P. H.: Relaxation effects in a mixed phase region. Part 1. General theory. J. Non-Equilib. Thermodyn. 12 (1987) 169–181Google Scholar
  53. 53.
    Hills, R. N.; Roberts, P. H.: Relaxation effects in a mixed phase region. Part 2. Illustrative examples. J. Non-Equilib. Thermodyn. 12 (1987) 183–195Google Scholar
  54. 54.
    Hills, R. N.; Roberts, P. H.: A generalised Scheil-Pfann equation for a dynamical theory of a mushy zone. Int. J. Non-Linear Mech. 23 (1988) 327–339Google Scholar
  55. 55.
    Hills, R. N.; Roberts, P. H.: On the formulation of diffusive mixture theories for two-phase regions. J. Engng. Math. 22 (1988) 93–106Google Scholar
  56. 56.
    Homsy, G. M.: Global stability of time-dependent flows. Part 1. Impulsively heated or cooled fluid layers. J. Fluid Mech. 60 (1973) 129–139Google Scholar
  57. 57.
    Homsy, G. M.: Global stability of time-dependent flows. Part 2. Modulated fluid layers. J. Fluid Mech. 62 (1974) 387–403Google Scholar
  58. 58.
    Hurle, D. T. J.; Jakeman, E.: Soret-driven thermosolutal convection. J. Fluid Mech. 47 (1971) 667–687Google Scholar
  59. 59.
    Hurle, D. T. J.; Jakeman, E.; Pike, E. R.: On the solution of the Bénard problem with boundaries of finite conductivity. Proc. Roy. Soc. London A 296 (1967) 469–475Google Scholar
  60. 60.
    Hurle, D. T. J.; Jakeman, E.; Wheeler, A. A.: Effect of solutal convection on the morphological stability of a binary alloy. J. Crystal Growth 58 (1982) 163–179Google Scholar
  61. 61.
    Hutter, K.: A mathematical model of polythermal glaciers and ice sheets. Geophys. Astrophys. Fluid Dyn. 21 (1982) 201–224Google Scholar
  62. 62.
    Hutter, K.: Theoretical Glaciology. D. Reidel Publishing 1983Google Scholar
  63. 63.
    Hutter, K.; Blatter, H.; Funk, M.: A model computation of moisture content in polythermal glaciers. J. Geophys. Res. 93 (1988) 12205–12214Google Scholar
  64. 64.
    Hutter, K.; Engelhardt, H.: The use of continuum thermodynamics in the formation of ice-sheet dynamics. Annals Glaciol. 11 (1988) 46–51Google Scholar
  65. 65.
    Hutter, K.; Straughan, B.: A scaling analysis for convection in thawing subsea permafrost. (in preparation).Google Scholar
  66. 66.
    Jankowski, D. F.; Neitzel, G. P.; Shen, Y. H.; Squire, T. H.: Stability of thermocapillary convection during float-zone crystal growth. In: Energy stability and convection. Pitman Res. Notes Math. London: Longman 1988Google Scholar
  67. 67.
    Jhaveri, B. S.; Homsy, G. M.: The onset of convection in fluid layers heated rapidly in a time-dependent manner. J. Fluid Mech. 114 (1982) 251–260Google Scholar
  68. 68.
    Joseph, D. D.: On the stability of the Boussinesq equations. Arch. Rational Mech. Anal. 20 (1965) 59–71Google Scholar
  69. 69.
    Joseph, D. D.: Nonlinear stability of the Boussinesq equations by the method of energy. Arch. Rational Mech. Anal. 22 (1966) 163–184Google Scholar
  70. 70.
    Joseph, D. D.: Global stability of the conduction-diffusion solution. Arch. Rational Mech. Anal. 36 (1970) 285–292Google Scholar
  71. 71.
    Joseph, D. D.: Stability of fluid motions. Vol. I. Berlin Heidelberg New York: Springer-Verlag 1976Google Scholar
  72. 72.
    Joseph, D. D.: Two fluids heated from below. In: Energy Stability and Convection. Pitman Res. Notes Math. Longman 1988Google Scholar
  73. 73.
    Joseph, D. D.; Shir, C. C.: Subcritical convective instability. Part I. Fluid layers. J. Fluid Mech. 26 (1966) 753–768Google Scholar
  74. 74.
    Jou, D.; Casas-Vazquez, J.; Lebon, G.: Extended irreversible thermodynamics. Rep. Prog. Phys. 51 (1988) 1105–1179Google Scholar
  75. 75.
    Kassoy, D. R.: A guide to mathematical modes of convection processes in geothermal systems. In: Fluid mechanics in energy conversion. Siam, Philadelphia 1980Google Scholar
  76. 76.
    Kelvin, Lord: On the stability of steady and of periodic fluid motion. Phil. Mag. (5) 23 (1887) 459–464; 529–539Google Scholar
  77. 77.
    Kondo, M. A.; Unno, W.: Convection and gravity waves in two layer models. I. Overstable modes driven in conducting boundary layers. Geophys. Astrophys. Fluid Dyn. 22 (1982) 305–324Google Scholar
  78. 78.
    Kondo, M. A.; Unno, W.: Convection and gravity waves in two layer models. II. Overstable convection of large horizontal scales. Geophys. Astrophys. Fluid Dyn. 27 (1983) 229–252Google Scholar
  79. 79.
    Lebon, G.; Perez-Garcia, C.: Convective instability of a micropolar fluid layer by the method of energy. Int. J. Engng. Sci. 19 (1981) 1321–1329Google Scholar
  80. 80.
    Levandowsky, M.; Childress, S.; Spiegel, E. A.; Hutner, S. H.: A mathematical model of pattern formation by swimming micro-organisms. J. Protozoology 22 (1975) 296–306Google Scholar
  81. 81.
    Lindsay, K. A.; Straughan, B.: A thermodynamic viscous interface theory and associated stability problems. Arch. Rational Mech. Anal. 71 (1979) 307–326Google Scholar
  82. 82.
    Loper, D. E.; Roberts, P. H.: On the motion of an iron alloy core containing a slurry. Part 1. General theory. Geophys. Astrophys. Fluid Dyn. 9 (1978) 289–321Google Scholar
  83. 83.
    Loper, D. E.; Roberts, P. H.: On the motion of an iron alloy core containing a slurry. Part 2. A simple model. Geophys. Astrophys. Fluid Dyn. 16 (1980) 83–127Google Scholar
  84. 84.
    Lutyen, P. J.: Stability of a rotating liquid drop immersed in a co-rotating fluid with different density. Proc. Roy. Soc. London A 414 (1987) 59–82Google Scholar
  85. 85.
    McTaggart, C. L.: Energy and linear stability analyses of surface and second sound effects in convection problems. Ph. D. Thesis, Univ. Glasgow 1983Google Scholar
  86. 86.
    McTaggart, C. L.: Convection driven by concentration and temperature dependent surface tension. J. Fluid Mech. 134 (1983) 301–310Google Scholar
  87. 87.
    McTaggart, C. L.: On the stabilising effect of surface films in Bénard convection. Physico Chemical Hydrodyn. 5 (1984) 321–331Google Scholar
  88. 88.
    Merker, G. P.; Waas, P.; Grigull, U.: Onset of convection in a horizontal water layer with maximum density effects. Int. J. Heat Mass Transfer 22 (1979) 505–515Google Scholar
  89. 89.
    Morland, L. W.; Kelly, R. J.; Morris, E. M.: A mixture theory for a phasechanging snowpack. (to appear in Cold Regions Sci. Tech.)Google Scholar
  90. 90.
    Müller, I,; Ruggeri, T. (eds.): Kinetic theory and extended thermodynamics. Bologna: Pitagora 1987Google Scholar
  91. 91.
    Munson, B. R.; Joseph, D. D.: Viscous incompressible flow between concentric rotating cylinders. Part 2. Hydrodynamic stability. J. Fluid Mech. 49 (1971) 305–318Google Scholar
  92. 92.
    Niedrauer, T. M.; Martin, S.: An experimental study of brine drainage and convection in young sea ice. J. Geophys. Res. (C) 84 (1979) 1176–1186Google Scholar
  93. 93.
    Osterkamp, T. E.; Harrison, W. D.: Temperature measurements in subsea permafrost off the coast of Alaska. In: Proc. 4th Canadian Permafrost Conf. National Res. Council. Canada 1982Google Scholar
  94. 94.
    Payne, L. E.; Song, J. C.; Straughan, B.: Double diffusive porous penetrative convection; thawing subsea permafrost. Int. J. Engng. Sci. 26 (1988) 797–809Google Scholar
  95. 95.
    Payne, L. E.; Straughan, B.: Unconditional nonlinear stability in penetrative convection. Geophys. Astrophys. Fluid Dyn. 39 (1987) 57–63Google Scholar
  96. 96.
    Payne, L. E.; Straughan, B.: Critical Rayleigh numbers for oscillatory and non-linear convection in an isotropic thermomicropolar fluid. Int. J. Engng. Sci. 27 (1989) 827–836Google Scholar
  97. 97.
    Proctor, M. R. E.: Steady subcritical thermohaline convection. J. Fluid Mech. 105 (1981) 507–521Google Scholar
  98. 98.
    Rajagopal, K. R.; Wineman, A. S.; Gandhi, M.: On boundary conditions for a certain class of problems in mixture theory. Int. J. Engng. Sci. 24 (1986) 1453–1463Google Scholar
  99. 99.
    Ray, R. J.; Krantz, W. B.; Caine, T. N.; Gunn, R. D.: A model for sorted patterned-ground regularity. J. Glaciology 29 (1983) 317–337Google Scholar
  100. 100.
    Reddy, B. D.; Voyé, H. F.: Finite element analysis of the stability of fluid motions. J. Computational Phys. 79 (1988) 92–112Google Scholar
  101. 101.
    Rionero, S.: Sulla stabilità asintotica in media in magnetoidrodinamica. Ann. Mat. Pura Appl. 76 (1967) 75–92Google Scholar
  102. 102.
    Rionero, S.: Metodi variazionali per la stabilità asintotica in media in magnetoidrodinamica. Ann. Mat. Pura Appl. 78 (1968) 339–364Google Scholar
  103. 103.
    Rionero, S.: Sulla stabilità magnetofluidodinamica nonlineare asintotica in media in presenza di effetto Hall. Ricerche Matem. 20 (1971) 285–296Google Scholar
  104. 104.
    Rionero, S.; Straughan, B.: Convection in a porous medium with internal heat source and variable gravity effects. Int. J. Engng. Sci. 28 (1990) 497–503Google Scholar
  105. 105.
    Roberts, P. H.: An introduction to magnetohydrodynamics. London: Longman 1967)Google Scholar
  106. 106.
    Roberts, P. H.: Electrohydrodynamic convection. Q. Jl. Mech. Appl. Math. 22 (1969) 211–220Google Scholar
  107. 107.
    Roberts, P. H.: Equilibria and stability of a fluid type II superconductor. Q. Jl Mech. Appl. Math. 34 (1981) 327–343Google Scholar
  108. 108.
    Roberts, P. H.: Convection in spherical systems. In: Irreversible phenoena and dynamical systems analysis in geoscience. pp. 53–71. D. Reidel ed. C. Nicolis and G. Nicolis 1987Google Scholar
  109. 109.
    Roberts, P. H.: Dynamo Theory. In: Irreversible phenomena and dynamical systems analysis in geosciences. pp. 73–133. D. Reidel ed C. Nicolis and G. Nicolis 1987Google Scholar
  110. 110.
    Roberts, P. H.: Future of geodynamo theory. Geophys. Astrophys. Fluid Dyn. 44 (1988) 3–31Google Scholar
  111. 111.
    Roberts, P. H.: On topographic core-mantle coupling. Geophys. Astrophys. Fluid Dyn. 44 (1988) 181–187Google Scholar
  112. 112.
    Rosenblat, S.; Davis, S. H.; Homsy, G. M.: Nonlinear Marangoni convection in bounded layers. Part 1. Circular cylindrical containers. J. Fluid Mech. 120 (1982) 91–122Google Scholar
  113. 113.
    Rosenblat, S.; Homsy, G. M.; Davis, S. H.: Nonlinear Marangoni convection in bounded layers. Part 2. Rectangular cylindrical containers. J. Fluid Mech. 120 (1982) 123–138Google Scholar
  114. 114.
    Rossby, H. T.: A study of Bénard convection with and without rotation. J. Fluid Mech. 36 (1969) 309–335Google Scholar
  115. 115.
    Ruddick, B. R.; Shirtcliffe, T. G. L.: Data for double diffusers: physical properties of aqueous salt-sugar solutions. Deep Sea Research 26 (1979) 775–787Google Scholar
  116. 116.
    Serrin, J.: Mathematical principles of classical fluid mechanics. In: Handbuch der Physik. Vol. VIII/1. Berlin Göttingen Heidelberg: Springer-Verlag 1959Google Scholar
  117. 117.
    Serrin, J.: On the stability of viscous fluid motions. Arch. Rational Mech. Anal. 3 (1959) 1–13Google Scholar
  118. 118.
    Shir, C. C.; Joseph, D. D.: Convection instability in a temperature and concentration field. Arch. Rational Mech. Anal. 30 (1968) 38–80Google Scholar
  119. 119.
    Slemrod, M.: An energy stability method for simple fluids. Arch. Rational Mech. Anal. 68 (1978) 1–18Google Scholar
  120. 120.
    Straughan, B.: Energy stability in the Bénard problem for a fluid of second grade. ZAMP 68 (1983) 502–509Google Scholar
  121. 121.
    Straughan, B.: Finite amplitude instability thresholds in penetrative convection. Geophys. Astrophys. Fluid Dyn. 34 (1985) 227–242Google Scholar
  122. 122.
    Straughan, B.: Stability of a layer of dipolar fluid heated from below. Math. Meth. Appl. Sci. 9 (1987) 35–45Google Scholar
  123. 123.
    Straughan, B.: A nonlinear analysis of convection in a vertical porous slab. Geophys. Astrophys. Fluid Dyn. 42 (1988) 269–275Google Scholar
  124. 124.
    Straughan, B.: Convection in a variable gravity field. J. Math. Anal. Appl. 140 (1989) 467–475Google Scholar
  125. 125.
    Straughan, B.: Nonlinear energy stability and convection near the density maximum.Google Scholar
  126. 126.
    Swift, D. W.; Harrison, W. D.: Convective transport of brine and thaw of subsea permafrost: results of numerical simulations. J. Geophys. Res. (C2) 89 (1984) 2080–2086Google Scholar
  127. 127.
    Swift, D. W.; Harrison, W. D.; Osterkamp, T. E.: Heat and salt transport processes in thawing subsea permafrost at Prudhoe bay, Alaska. In: Proc. 4th Intl. Permafrost. Washington, D.C.: National Academic Press 1983Google Scholar
  128. 128.
    Thomson, J.: On a changing tesselated structure in certain liquids. Proc. Phil. Soc. Glasgow 13 (1882) 464–468Google Scholar
  129. 129.
    Turnbull, R. J.: Electroconvective instability with a stabilising temperature gradient Part 1. Theory. Phys. Fluids 11 (1968) 2588–2596Google Scholar
  130. 130.
    Veronis, G.: Penetrative convection. Astrophys. J. 137 (1963) 641–663Google Scholar
  131. 131.
    Walden, R. W.: Ahlers, G.: Non-Boussinesq and penetrative convection in a cylindrical cell. J. Fluid Mech. 109 (1981) 89–114Google Scholar
  132. 132.
    Whitehead, J. A.: Upon boundary conditions imposed by a stratified fluid. Geophys. Fluid Dyn. 2 (1971) 289–298Google Scholar
  133. 133.
    Whitehead, J. A.; Chen, M. M.: Thermal instability and convection of a thin layer bounded by a stably stratified region. J. Fluid Mech. 40 (1970) 549–576Google Scholar
  134. 134.
    Zahn, J. P.; Toomre, J.; Latour, J.: Nonlinear modal analysis of penetrative convection. Geophys. Astrophys. Fluid Dyn. 22 (1982) 159–193Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • K. A. Lindsay
    • 1
  • B. Straughan
    • 1
  1. 1.Department of MathematicsUniversity GardensGlasgowScotland

Personalised recommendations