Skip to main content
Log in

Analysis of mathematical models of microstrip transmission lines

  • III. Mathematical Modeling
  • Published:
Computational Mathematics and Modeling Aims and scope Submit manuscript

Abstract

Solution methods for eigenvalue problems nonlinear in the spectral parameter are considered for model problems of the theory of microstrip transmission lines. The spectral properties of the Fredholm operator function F(λ) in Sobolev weighting classes are considered. A numerical method is proposed for determining the approximate characteristic values of F(λ). We prove theorems on nonemptiness, discreteness, and factorization of the spectrum and on convergence of the approximate spectra and characteristic values to the exact quantities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  1. A. S. Il'inskii and Yu. V. Shestopalov, "Mathematical models for the problem of wave propagation in microstrip devices," in:Computational Methods and Programming [in Russian], No. 32, Moscow State Univ. (1980).

  2. A. S. Il'inskii, E. V. Chernokozhin, and Yu. V. Shestopalov, "Development of the method of operator equations for solving the problem of eigenwaves of connected microstrip lines with a stratified dielectric base," in:Mathematical Models of Applied Electrodynamics [in Russian], Moscow State Univ. (1984), p. 116–136.

  3. A. N. Tikhonov and A. A. Samarskii,Equations of Mathematical Physics [in Russian], Nauka, Moscow (1972).

    Google Scholar 

  4. N. I. Muskhelishvili,Singular Integral Equations [in Russian], Fizmatgiz, Moscow (1962).

    Google Scholar 

  5. A. N. Kolmogorov and S. V. Fomin,Elements of the Theory of Functions and Functional Analysis [in Russian], Nauka, Moscow (1981).

    Google Scholar 

  6. A. Peach,Operator Ideals [Russian translation], Mir, Moscow (1982).

    Google Scholar 

  7. G. M. Vainikko and O. O. Karma, "On convergence of approximate methods of solution of linear and nonlinear operator equations,"Zh. Vychisl. Mat. Mat. Fiz.,14, No. 4 (1974).

    Google Scholar 

  8. T. Kato,Perturbation Theory of Linear Operators [Russian translation], Mir, Moscow (1972).

    Google Scholar 

  9. A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev,Integrals and Series. Special Functions [in Russian], Nauka, Moscow (1983).

    Google Scholar 

  10. Yu. V. Shestopalov, "Existence of a discrete spectrum of normal waves of microstrip transmission lines with a layered dielectric filling,"Dokl. Akad. Nauk SSSR 273, No. 3, 592–596 (1984).

    Google Scholar 

  11. A. A. Kirillov and A. D. Gvishiani,Theorems and Problems of Functional Analysis [in Russian], Nauka, Moscow (1979).

    Google Scholar 

  12. L. N. Deryugin, O. A. Kurdyumov, and V. E. Sotin, "Fundamental and parasitic types of waves in a screened microstrip line,"Izv. Vyssh. Uchebn. Zaved., Radiofiz. 16, No. 1, 118–128 (1973).

    Google Scholar 

  13. A. S. Il'inskii, "Substantiating the calculation of eigenwaves of a microstrip transmission line,"Diff. Uravn. 17, No. 10, 1868–1874 (1981).

    Google Scholar 

Download references

Authors

Additional information

Translated from Metody Matematicheskogo Modelirovaniya, Avtomatizatsiya Obrabotki Nablyudenii i Ikh Primeneniya, pp. 175–198, 1986.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Il'inskii, A.S., Smirnov, Y.G. Analysis of mathematical models of microstrip transmission lines. Comput Math Model 1, 218–234 (1990). https://doi.org/10.1007/BF01129065

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01129065

Keywords

Navigation