Brain Topography

, Volume 5, Issue 2, pp 95–102 | Cite as

Magnetoencephalography: A tool for functional brain imaging

  • Matti S. Hämäläinen
Article

Summary

At present, one of the most promising windows to the functional organization of the human brain is magnetoencephalography (MEG). By mapping the magnetic field distribution outside the head the sites of neural events can be located with an accuracy of a few millimeters and the temporal evolution of the activation can be traced with a millisecond resolution. This paper reviews some forward field calculation approaches suitable for the interpretation of the brain's electromagnetic signals. Inverse modelling with multiple dipoles is described in detail. An example of the analysis of the somatosensory evoked-responses illustrates the potential of multiple signal classification (MUSIC) algorithm in finding optimal dipole positions.

Key words

Magnetoencephalography Functional brain imaging Forward problem Current source estimation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahonen, A.I., Hämäläinen, M.S., Kajola, M.J., Knuutila, J.E.T., Lounasmaa, O.V., Simola, J.T., Tesche, C.D., and Vilkman, V.A. Multichannel SQUID systems for brain research. IEEE Trans. Magn., MAG, 1991, 27: 2786–2792.Google Scholar
  2. Arthur, R.M. and Geselowitz, D.B. Effect of inhomogeneities on the apparent location and magnitude of a cardiac current dipole source. IEEE Trans. Biomed. Eng., BME, 1970, 17: 141–146.Google Scholar
  3. Cuffin, B.N. and Cohen, D. Magnetic fields of a dipole in special volume conductor shapes. IEEE Trans. Biomed. Eng., BME, 1977, 24: 372–381.Google Scholar
  4. Geselowitz, D.B. On bioelectric potentials in an inhomogeneous volume conductor. Biophys. J., 1967, 7: 1–11.Google Scholar
  5. Golub, G.H. and van Loan, C.F. Matrix Computations. The Johns Hopkins University Press, Baltimore, second edition, 1989.Google Scholar
  6. Hari, R., Reinikainen, K., Kaukoranta, E., Hämäläinen, M., Ilmoniemi, R., Penttinen, A., Salminen, J. and Teszner, D. Somatosensory evoked cerebral magnetic fields from SI and SII in man. Electroenceph. Clin. Neurophysiol., 1984, 57: 254–263.PubMedGoogle Scholar
  7. Hari, R. The neuromagnetic method in the study of the human auditory cortex. In F.Grandoli, M.Hoke, and G.L. Romani, editors, Auditory Evoked Magnetic Fields and Electric Potentials, Karger, Basel, 1990, 222–282.Google Scholar
  8. Hari, R. On brain's magnetic responses to sensory stimuli. J. Clin. Neurophysiol., 1991, 8: 157–169.PubMedGoogle Scholar
  9. Hari, R., Karhu, J., Hämäläinen, M., Knuutila, J., Sams, J., and Vilkman, V. Functional organization of the human first and second somatosensory cortex as revealed by neuromagnetic measurements. European J. Neurosci., 1992 (in press).Google Scholar
  10. Hämäläinen, M.S., Hari, R., Ilmoniemi, R., Knuutila, J., and Lounasmaa, O.V. Magnetoencephalography - theory, instrumentation, and applications to noninvasive studies of the working human brain. Rev. Mod. Phys., 1993, (in press).Google Scholar
  11. Hämäläinen M.S. and Ilmoniemi, R.J. Interpreting measured magnetic fields of the brain: Estimates of current distributions. Technical Report TKK-F-A559, Helsinki University of Technology, 1984.Google Scholar
  12. Hämäläinen, M.S. and Sarvas, J. Realistic conductivity geometry model of the human head for interpretation of neuromagnetic data. IEEE Trans. Biomed. Eng., 1989, 36: 165–171.PubMedGoogle Scholar
  13. Helmholtz, H. Ueber einige Gesetze der Vertheilung elektrischer Ströme in körperlichen Leitern, mit Anwendung auf die thierisch-elektrischen Versuche. Ann. Phys. Chem., 1853, 89: 211–233, 353–377.Google Scholar
  14. Hoenig, H.E., Daalmans, G.M., Bär, L, Bömmel, F., Paulus, A., Uhl, D., Weisse, H.J., Schneider, S., Seifert, H., Reichenberger, H., and Abraham-Fuchs, K. Multi channel dc SQUID sensor array for biomagnetic applications. IEEE Trans. Magn., MAG, 1991, 27: 2777–2785.Google Scholar
  15. Ilmoniemi, R.J., Hämäläinen, M.S. and Knuutila, J. The forward and inverse problems in the spherical model. In H. Weinberg, G. Stroink, and T. Katila, editors, Biomagnetism: Applications & Theory, Pergamon Press, New York, 1985, 278–282.Google Scholar
  16. Kajola, M., Ahlfors, S., Ehnholm, G.J., Hällström, J., Hämäläinen, M.S., Ilmoniemi, R.J., Kiviranta, M., Knuutila, J., Lounasmaa, O.V., Tesche, C.D., and Vilkman, V. A 24-channel magnetometer for brain research. In S.J. Williamson, M. Hoke, G. Stroink, and M. Kotani, editors, Advances in Biomagnetism, New York, Plenum, 1989, 673–676.Google Scholar
  17. Kaukoranta, E., Hari, R., Hämäläinen, M., and Huttunen, J. Cerebral magnetic fields evoked by peroneal nerve stimulation. Somatosensory Res., 1986, 3: 309–321.Google Scholar
  18. Kullmann, W.H., Jandt, K.D., Rehm, K., Schlitt, H.A., Dallas, W.J., and Smith, W.E. A linear estimation approach to biomagnetic imaging. In S.J. Williamson, M. Hoke, G. Stroink, and M. Kotani, editors, Advances in Biomagnetism, New York, Plenum, 1989, 571–574.Google Scholar
  19. Meijs, J.W.H., and Peters, M.J. The EEG and MEG, using a model of eccentric spheres to describe the head. IEEE Trans. Biomed. Eng., BME, 1987, 34: 913–920.Google Scholar
  20. Mosher, J.C., Lewis, P.S., and Leahy R. Multiple dipole modeling and localization from spatio-temporal MEG data. IEEE Trans. Biomed. Eng., 1992, BME-39: 541–557.Google Scholar
  21. Mosher, J.C., Lewis, P.S., Leahy, R. and Singh, M. Multiple dipole modeling of spatio-temporal MEG data. In A.F. Gmitro, P.S. Idell, and I.J. LaHaie, editors, Digital Image Synthesis and Inverse Optics, Proc. SPIE 1351, 1990, 364–375.Google Scholar
  22. de Munck, J.C. The potential distribution in a layered spheroidal volume conductor. J. Appl. Phys., 1988, 64: 464–470.Google Scholar
  23. de Munck, J.C. A mathematical and physical interpretation of the electromagnetic field of the brain. PhD thesis, University of Amsterdam, 1989.Google Scholar
  24. de Munck, J.C. The estimation of time-varying dipoles on the basis of evoked potentials. Electroenceph. Clin. Neurophysiol., 1990, 77: 156–160.PubMedGoogle Scholar
  25. de Munck, J.C. A linear discretization of the volume conductor boundary integral equation using analytically integrated elements. IEEE Trans. Biomed. Eng., in press 1992.Google Scholar
  26. Oostendorp, T.F. and van Oosterom, A. Source parameter estimation in inhomogeneous volume conductors of arbitrary shape. IEEE Trans. Biomed. Eng., BME, 1989, 36: 382–391.Google Scholar
  27. Ribary, U., Ioannides, A.A., Singh, K.D., Hasson, R., Bolton, J.P.R., Lado, F., Mogilner, A., and Llin'as, R. Magnetic field tomography of coherent thalamo-cortical 40-Hz oscillations in humans. Proc. Natl. Acad. Sci. USA, 1991, 88: 11037–11041.PubMedGoogle Scholar
  28. Romani, G.L., and Rossini, P. Neuromagnetic functional localization: Principles, state of the art, and perspectives. Brain Topography, 1988, 1: 5–19.PubMedGoogle Scholar
  29. Ryhänen, T., Seppä, H., Ilmoniemi, R., and Knuutila, J. SQUID magnetometers for low-frequency applications. J. Low Temp. Phys., 1989, 76: 287–386.Google Scholar
  30. Sarvas, J. Basic mathematical and electromagnetic concepts of the biomagnetic inverse problem. Phys. Med. Biol., 1987, 32: 11–22.PubMedGoogle Scholar
  31. Scherg, M., Hari, R., and Hämäläinen, M. Frequency-specific sources of the auditory N19-P30-P50 response detected by a multiple source analysis of evoked magnetic fields and potentials. In S.J. Williamson, M. Hoke, G. Stroink, and M. Kotani, editors, Advances in Biomagnetism, New York, Plenum, 1989, 97–100.Google Scholar
  32. Scherg, M. Fundamentals of dipole source potential analysis. Karger, Basel, 1990, 40–69.Google Scholar
  33. Schmidt, R.O. Multiple emitter location and signal parameter estimation. IEEE Trans. Antennas Propagat., AP, 1986, 34: 276–280.Google Scholar
  34. Urankar, L. Common compact analytical formulas for computation of geometry integrals on a basic Cartesian subdomain in boundary and volume integral methods. Eng. Anal. Boundary Elements, 1990, 7: 124–129.Google Scholar
  35. Wax, M., and Kailath, T. Detection of signals by information theoretic criteria. IEEE Trans. Acoust., Speech and Signal Processing, ASSP, 1985, 33: 387–392.Google Scholar
  36. Williamson, S.J., and Kaufman, L. Biomagnetism. J. Magn. Magn. Mat., 1981, 22: 129–201.Google Scholar
  37. Williamson, S.J., Lü, Z.-L., Karron, D. and Kaufman, L. Advantages and limitations of magnetic source imaging. Brain Topography, 1991, 4: 169–180.PubMedGoogle Scholar
  38. Yin, Y.Q. and Krishnaiah, P.R. On some nonparametric methods for detection of the number of signals. IEEE Trans. Acoust., Speech and Signal Processing, ASSP, 1987, 35: 1533–1538.Google Scholar

Copyright information

© Human Sciences Press, Inc. 1992

Authors and Affiliations

  • Matti S. Hämäläinen
    • 1
  1. 1.Low Temperature LaboratoryHelsinki University of TechnologyEspooFinland

Personalised recommendations