Brain Topography

, Volume 3, Issue 4, pp 407–423 | Cite as

Topographic component (Parallel Factor) analysis of multichannel evoked potentials: Practical issues in trilinear spatiotemporal decomposition

  • Aaron S. Field
  • Daniel Graupe
Article

Summary

We describe a substantive application of the trilinear topographic components /parallel factors model (TC/PARAFAC, due to Möcks/Harshman) to the decomposition of multichannel evoked potentials (MEP's). We provide practical guidelines and procedures for applying PARAFAC methodology to MEP decomposition. Specifically, we apply techniques of data preprocessing, orthogonality constraints, and validation of solutions in a complete TC analysis, for the first time using actual MEP data. The TC model is shown to be superior to the traditional bilinear principal components model in terms of data reduction, confirming the advantage of the TC model's added assumptions. The model is then shown to provide a unique spatiotemporal decomposition that is reproducible in different subject groups. The components are shown to be consistent with spatial/temporal features evident in the data, except for an artificial component resulting from latency jitter. Subject scores on this component are shown to reflect peak latencies in the data, suggesting a new aspect to statistical analyses based on subject scores. In general, the results support the conclusion that the TC model is a promising alternative to principal components for data reduction and analysis of MEP's.

Key words

Evoked potentials Principal components Topographic components Spatiotemporal analysis Decomposition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bio-logic Systems Corp. Guidelines for Normative Data Collection: Brain Atlas Systems. Mundelein, Illinois, July 1988.Google Scholar
  2. Carroll, J. D. and Chang, J. J. Analysis of individual differences in multidimensional scaling via an N-way generalization of "Eckart-Young" decomposition. Psychometrika, 1970, 35:283–319.Google Scholar
  3. Carroll, J. D. and Pruzansky, S. The CANDECOMP-CANDELINC family of models and methods for multidimensional data analysis. In: Law, H. G., Snyder, Jr., C. W., Hattie, J. A., and McDonald, R. P. (eds.), Research Methods for Multimode Data Analysis, Praeger, New York, 1984: 372–402.Google Scholar
  4. Donchin, E. and Heffley, E. F. Multivariate analysis of event-related potential data: A tutorial review. In: Otto, D. A. (ed.), Multidisciplinary Perspectives in Event-Related Brain Potential Research, U.S. Gov. Printing Office, Washington, DC, 1978: 555–572.Google Scholar
  5. Field, A. S. Applied Topographic Component / Parallel Factor Analysis for Spatiotemporal Decomposition of Multichannel Evoked Potentials. Ph.D. thesis, Department of Bioengineering, University of Illinois at Chicago, 1991.Google Scholar
  6. Field, A. S. and Graupe, D. Topographic components analysis of evoked potentials: Estimation of model parameters and evaluation of parameter uniqueness. J. Biomed. Eng., 1990a, 12:287–300.Google Scholar
  7. Field, A. S. and Graupe, D. Topographic components analysis of evoked potentials: Parameter estimation and some preliminary results. Proc. IEEE Int. Symp. Circ. Syst. (ISCAS), New Orleans, 1990b: 2049–2052.Google Scholar
  8. Glaser, E. M. and Ruchkin, D. S. Principles of Neurobiological Signal Analysis. Academic Press, New York, 1976: 233–290.Google Scholar
  9. Harner, R. N. Singular value decomposition-A general linear model for analysis of multivariate structure in the electroencephalogram. Brain Topography, 1990, 3:43–47.Google Scholar
  10. Harshman, R. A. Foundations of the PARAFAC procedure: Models and conditions for an ‘explanatory’ multi-modal factor analysis. UCLA Working Papers in Phonetics (University Microfilms #10,085), 1970, 16:1–84.Google Scholar
  11. Harshman, R. A. ‘How can I know if it's "real?"’ A catalog of diagnostics for use with three-mode factor analysis and multidimensional scaling. In: Law, H. G., Snyder, Jr., C. W., Hattie, J. A., and McDonald, R. P. (eds.), Research Methods for Multimode Data Analysis, Praeger, New York, 1984: 566–591.Google Scholar
  12. Harshman, R. A. and De Sarbo, W. S. An application of PARAFAC to a small sample problem, demonstrating preprocessing, orthogonality constraints, and split-half diagnostic techniques. In: Law, H. G., Snyder, Jr., C. W., Hattie, J. A., and McDonald, R. P. (eds.), Research Methods for Multimode Data Analysis, Praeger, New York, 1984, 602–642.Google Scholar
  13. Harshman, R. A. and Lundy, M. E. Data preprocessing and the extended PARAFAC model. In: Law, H. G., Snyder, Jr., C. W., Hattie, J. A., and McDonald, R. P. (eds.), Research Methods for Multimode Data Analysis, Praeger, New York, 1984a: 216–281.Google Scholar
  14. Harshman, R. A. and Lundy, M. E. The PARAFAC model for three-way factor analysis and multidimensional scaling. In: Law, H. G., Snyder, Jr., C. W., Hattie, J. A., and McDonald, R. P. (eds.), Research Methods for Multimode Data Analysis, Praeger, New York, 1984b: 123–215.Google Scholar
  15. Lehmann, D. Principles of spatial analysis. In: Gevins, A. S. and Remond, A. (eds.), Methods of Analysis of Brain Electrical and Magnetic Signals, volume 1 of Handbook of Electroencephalography and Clinical Neurophysiology (Revised Series), Elsevier, Amsterdam, 1987: 309–354.Google Scholar
  16. Lundy, M. E. and Harshman, R. A. Reference Manual for the PARAFAC Analysis Package. Scientific Software Associates, London, Ontario, Canada, 1985.Google Scholar
  17. Möcks, J. The influence of latency jitter in principal component analysis of event-related potentials. Psychophysiol., 1986, 23:480–484.Google Scholar
  18. Möcks, J. Decomposing event-related potentials: A new topographic components model. Biol. Psychol., 1988a, 26:199–215.Google Scholar
  19. Möcks, J. Topographic components model for event-related potentials and some biophysical considerations. IEEE Trans. Biomed. Eng., 1988b, 35:482–484.Google Scholar
  20. Möcks, J. and Verleger, R. Principal component analysis of event-related potentials: A note on misallocation of variance. Electroenceph. Clin. Neurophysiol., 1986, 65:393–398.Google Scholar
  21. Nunez, P. L. Electric Fields of the Brain. Oxford Univ. Press, New York, 1981: 22–24.Google Scholar
  22. Offner, F. F. The EEG as potential mapping: The value of the average monopolar reference. Electroenceph. Clin. Neurophysiol., 1950, 2:215–216.Google Scholar
  23. Rabiner, L. R. and Schafer, R. W. Digital Processing of Speech Signals. Prentice-Hall, New Jersey, 1978: 480–484.Google Scholar
  24. Skrandies, W. Data reduction of multichannel fields: Global field power and principal component analysis. Brain Topography, 1989, 2:73–80.Google Scholar
  25. Skrandies, W. and Lehmann, D. Spatial principal components of multichannel maps evoked by lateral visual half-field stimuli. Electroenceph. Clin. Neurophysiol., 1982, 54:662–667.Google Scholar
  26. Wood, C. C. and McCarthy, G. Principal component analysis of event-related potentials: Simulation studies demonstrate misallocation of variance across components. Electroenceph. Clin. Neurophysiol., 1984, 59:249–260.Google Scholar

Copyright information

© Human Sciences Press, Inc. 1991

Authors and Affiliations

  • Aaron S. Field
    • 1
  • Daniel Graupe
    • 1
  1. 1.Department of Electrical Engineering and Computer Science and Department of Bioengineering (M/C 154)The University of Illinois at ChicagoChicagoUSA

Personalised recommendations