Skip to main content
Log in

Past, present and future of topographic mapping

  • Published:
Brain Topography Aims and scope Submit manuscript

Summary

Traditional EEG and EP analysis is trace-oriented. When mapping became popular, results of waveform analysis were mapped. Increased exposure to brain field maps has begun to orient analysis to the spatial aspects. Different maps must be generated by different neuronal populations; this offers direct key to the analysis of higher brain function. Space-oriented data reduction selects maps with optimal signal/noise ratio using Global Dissimilarity index. Classification and statistics of map landscapes uses extracted descriptors (locations of extrema or centroids) or three-dimensional dipole models. Map classification leads to adaptive segmentation of evoked or spontaneous map series into functional micro-states, the putative building blocks of perception and cognition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Brandeis, D. and Lehmann, D. Event-related potentials of the brain and cognitive processes: approaches and applications. Neuropsychologia, 1986, 24: 151–168.

    PubMed  Google Scholar 

  • Brandeis, D. and Lehmann, D. Segments of ERP map series reveal landscape changes with visual attention and subjective contours. Electroenceph. Clin. Neurophysiol., 1989, 73: 507–519.

    PubMed  Google Scholar 

  • Duffy, F.H., (Ed.). Topographic Mapping of Brain Electrical Activity. Butterworths, Boston, 1986, 428.

    Google Scholar 

  • Gath, I., Lehmann, D. and Bar-On, E. Fuzzy clustering of EEG signal and vigilance performance. Int. J. Neurosci., 1983, 20: 303–312.

    PubMed  Google Scholar 

  • Hamburger, H.L. Symposium on topographic mapping of EEG and evoked potentials: Fundamentals and clinical applications. Brain Topography, 1988, 1: 135–148.

    Google Scholar 

  • Kavanagh, R. N., Darcey, T.M., Lehmann, D. and Fender, D.H. Evaluation of methods for three-dimensional localization of electrical sources in the human brain. IEEE Trans. Biomed. Engng., 1978, 25: 421–429.

    Google Scholar 

  • Lehmann, D. Multichannel topography of human alpha EEG fields. Electroenceph. Clin. Neurophysiol., 1972, 31: 439–449.

    Google Scholar 

  • Lehmann, D. Human scalp EEG fields: Evoked, alpha, sleep and spike-wave patterns. In: H.H. Petsche, M.A.B. Brazier, (Eds.) Synchronization of EEG Activty in Epilepsies. Berlin, Springer 1971, 301–325.

    Google Scholar 

  • Lehmann, D. Spatial analysis of evoked and spontaneous EEG potentials. In: Yamaguchi N, Fujisawa K, (Eds.). Recent Advances in EEG and EMG Data Processing. Amsterdam, Elsevier 1981, 117–132.

    Google Scholar 

  • Lehmann, D. EEG assessment of brain activity: spatial aspects, segmentation and imaging. Int. J. Psychophysiol., 1984, 1: 267–276.

    PubMed  Google Scholar 

  • Lehmann, D. Principles of spatial analysis. In: A. Gevins and A. Remond, (Eds.),: Handbook of Electroencephalography and Clinical Neurophysiology, Vol 1: Analysis of Electrical and Magnetic Signals. Amsterdam, Elsevier 1987, 309–354.

    Google Scholar 

  • Lehmann, D. First Swiss EEG/EP mapping meeting. Brain Topography, 1988, 1:131–134.

    Google Scholar 

  • Lehmann, D. and Michel, C.M. Intracerebral dipole source localization for FFT power maps. Electroenceph. Clin. Neurophysiol., 1990, 76: 271–276.

    PubMed  Google Scholar 

  • Lehmann, D. and Skrandies, W. Reference-free identification of components of checkerboard-evoked multichannel potential fields. Electroenceph. Clin. Neurophysiol., 1980, 48: 609–621.

    PubMed  Google Scholar 

  • Lehmann, D. and Skrandies, W. Spatial analysis of evoked potentials in man - a review. Progr. Neurobiol., 1984, 23: 227–250.

    PubMed  Google Scholar 

  • Lehmann, D., Darcey, T.M. and Skrandies, W. Intracerebral and scalp fields evoked by hemiretinal checkerboard reversal, and modelling of their dipole generators. In: Clinical Applications of Evoked Potentials in Neurology. J. Courjon, F. Maugiere and M. Revol (Eds.), Raven Press, New York 1982, pp. 41–48.

    Google Scholar 

  • Lehmann, D., Meles, H.P. and Mir, Z. Average multichannel potential fields evoked from upper and lower hemiretina: latency differences. Electroenceph. Clin. Neurophysiol., 1977, 43: 725–731.

    PubMed  Google Scholar 

  • Lehmann, D., Ozaki, H. and Pal, I. EEG alpha map series: Brain micro-states by space-oriented adaptive segmentation. Electroenceph. Clin. Neurophysiol., 1987, 67: 271–288.

    Google Scholar 

  • Libet, B. Brain stimulation in the study of neuronal functions for conscious experience. Hum. Neurobiol., 1982, 1: 235–242.

    PubMed  Google Scholar 

  • Matsumoto, K., (Ed.) Topographic Electroencephalography in Clinical Testing. (Proc. 2nd Jap. Conference of Topographic Electroencephalography 1983), Neuron Publishers, Shinagawa, Tokyo, 1984, 192).

    Google Scholar 

  • Matsuoka, S., Soejima, T. and Yokata, A. (Eds.) Clinical Topographic Encephalography and Evoked Potential. (Proc. 4th Jap. Conference of Topographic Electroencephalography 1985), Shindan-To-Chiryo, Tokyo, 1986, 220.

    Google Scholar 

  • Maurer, K. (Ed.). Topographic Brain Mapping of EEG and Evoked Potentials. Springer, Berlin, 1989, 576.

    Google Scholar 

  • Pfurtscheller, G. and Lopes da Silva, F.H. (Eds.). Functional Brain Imaging. H. Huber, Toronto, 1988, 264.

    Google Scholar 

  • Skrandies, W. and Lehmann, D. Spatial principal components of multichannel maps evoked by lateral visual half-field stimuli. Electroenceph. Clin. Neurophysiol., 1982, 54: 297–305.

    Google Scholar 

  • Samson-Dollfus, D., Guieu, J.D., Gotman, J. and Etevenon, P., eds. Statistics and Topography in Quantitative EEG. Elsevier, Amsterdam, 1988, 283.

    Google Scholar 

  • Tatsuno, J., (Ed.) EEG Topography 1988 (Proc. 7th Jap. Conference of Topographic Electroencephalography 1988). J. Tatsuno, National Defense Medical College, Tokorozawa, Saitama 359 Japan, 1988, 322.

  • Tsutsui, J. (Ed.) EEG Topography 1987 (Proc. 6th Jap. Conference of Topographic Electroencephalography 1987), Neuron Publishers, Shinagawa, Tokyo, 1987, 237.

    Google Scholar 

  • Witte, H., Stallknecht, K., Ansorg, J., Griessbach, G., Petranek, S. and Rother, M. Using discrete Hilbert transformation to realize a general methodological basis for dynamic EEG mapping. Automedica (in press).

  • Wong, P.K.H., Harner, R. and Lehmann, D. (Eds.), The Saint Vincent Conferenc in Valle D'Aosta 1989. Brain Topography, 1989, 2: 1–118.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lehmann, D. Past, present and future of topographic mapping. Brain Topogr 3, 191–202 (1990). https://doi.org/10.1007/BF01128876

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01128876

Keywords

Navigation