Skip to main content
Log in

Structure and petrology of an alpine peridotite on Cypress Island, Washington, U.S.A

  • Published:
Beiträge zur Mineralogie und Petrographie Aims and scope Submit manuscript

Abstract

A study of the structural petrology of a peridotite exposed on Cypress Island in Skagit Co., Washington, U.S.A. has been carried out. The Cypress peridotite is, by virtue of its composition, structure and associations, typical of ultramafics of the alpine type. It contains relict layering and accumulative textures which show it to have originated by crystal settling from a magma of unknown initial composition. Parallelism of lineations and b-axes of folds in the layering with well-developed [100]-maxima in the fabrics of olivine crystals is considered to have arisen through a penetrative deformation of the mass accompanied by plastic flow or recrystallization of the olivine. An indication of the minimum temperature of the deformation is provided by cross-cutting veins of pyroxenite which have not participated in the folding. The most satisfactory interpretation of the overall fabric of the peridotite is that it was deformed, possibly during intrusion, as a crystal mush, and that filter pressing due to compaction of the solid particles by plastic flow or recrystallization removed all but a small percentage of the magmatic fraction which then crystallized following cessation of the movements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bailey, E. B., andW. T. McCallien: Serpentine lavas, the Ankara melange and Anatolian thrust. Trans. Roy. Soc. Edinburgh62, part 2, 403–422 (1953).

    Google Scholar 

  • Battey, M. H.: The relationship between preferred orientation of olivine in dunite and the tectonic environment. Am. J. Sci.258, 716–727 (1960).

    Google Scholar 

  • —: The relationship between preferred orientation of olivine in dunite and the tectonic environment; Reply to a discussion byR. N, Brothers. Am. J. Sci.260, 313–315 (1962).

    Google Scholar 

  • Bowen, N. L., andJ. F. Schairer: The system MgO-FeO-SiO2. Am. J. Sci.29, 151–217 (1935).

    Google Scholar 

  • —, andO. F. Tuttle: The system MgO-FeO-SiO2-H2O. Bull. Geol. Soc. Am.60, 439–460 (1949).

    Google Scholar 

  • Brothers, R. N.: Flow orientation of olivine. Am. J. Sci.257; 574–584 (1959).

    Google Scholar 

  • —: The relationship between preferred orientation of olivine in dunite and the tectonic environment; A discussion. Am. J. Sci.260, 310–312 (1962).

    Google Scholar 

  • Calnan, E. A., andC. J. B. Clews: Deformation textures in face-centred cubic metals. Phil. Mag.41, 1085–1100 (1950).

    Google Scholar 

  • —: The prediction of uranium deformation textures. Phil. Mag.43, 93–104 (1952).

    Google Scholar 

  • Chudoba, K. F., andJ. Frechen: Über die plastische Verformung von Olivin. Neues Jahrb. Abhandl., Abt. A.81, 183–200 (1950).

    Google Scholar 

  • Clarke, R. H., andW. S. Fyfe: Ultrabasic liquids. Nature191, 158–159 (1961).

    Google Scholar 

  • Hess, H. H.: A primary peridotite magma. Am. J. Sci.35, 321–344 (1938).

    Google Scholar 

  • —: Serpentines, orogeny, and epeirogeny. Geol. Soc. Am. Spec. Paper62, 391–407 (1955).

    Google Scholar 

  • — Stillwater igneous complex. Geol. Soc. Am. Mem.80 (1960).

  • Hotz, P. E., andE. D. Jackson: X-ray determinative curve for olivines of composition Fo80–95 from stratiform and alpine-type peridotites. U. S. Geol. Survey Prof. Paper460-E, 101–102 (1963).

    Google Scholar 

  • Hubbert, M. K., andW. W. Rubey: Role of fluid pressure in mechanics of overthrust faulting. Bull. Geol. Soc. Am.70, 115–166 (1959).

    Google Scholar 

  • Huntting, M. T.: Geological map of the State of Washington Washington State Division of Mines and Geology (1961).

  • Jackson, E. D.: Primary textures and mineral Associations 'in the ultramafic zone of the Stillwater complex, Montana, U. S. Geol. Survey Prof. Paper358 (1961).

  • Jones, K. A.: The significance of Schnitteffekt in petrofabric diagrams. Am. J. Sci.257, 55–62 (1959).

    Google Scholar 

  • Kamb, W. B.: Ice petrofabric observations; Appendix: Preparation of orientation-density diagrams. J. Geophys. Research64, 1891–1909 (1959).

    Google Scholar 

  • Knopf, E. B., andE. Ingerson: Structural petrology. Geol: Soc. Am. Mem.6 (1938).

  • Lipman, P. W.: Structure and origin of an ultramafic pluton in the Klamath Mountains, California. Am. J. Sci.262, 199–222 (1964).

    Google Scholar 

  • Maxwell, J. C., andA. Azzaroli: Submarine extrusion of ultramafic magma. (Abs.) Geol. Soc. Am. Spec. Paper73, 203–204 (1962).

    Google Scholar 

  • McClellan, R. D.: The geology of the San Juan Island s. Univ. Wash. Publs. Geol.2 (1927).

  • Noble, J. A., andH. P. Taylor: Correlation of the ultramafic complexes of south-eastern Alaska with those of other parts of North America and the world. Rept. XXIst Session Internat. Geol. Cong. Copenhagen, part 13, 188–197 (1960).

  • Ragan, D.: Emplacement of the Twin Sisters dunite, Washington. Am. J. Sci.261, 549–565 (1963).

    Google Scholar 

  • Raleigh, C. B.: Fabrics of naturally and experimentally deformed olivine. Ph. D. Thesis,. University of California at Los Angeles 1963.

  • —: Glide mechanisms in minerals in experimentally deformed rocks determined by slip-trace technique. Science150, 739–741 (1965).

    Google Scholar 

  • —, andM. S. Paterson: Experimental deformation of serpentinite and its tectonic implications. J. Geophys. Research70, 3965–3985 (1965).

    Google Scholar 

  • Roever, W. P. de: Sind die Alpinotypen Peridotitmassen vielleicht tektonisch verfrachtete Bruchstücke der Peridotitschale? Geol. Rundschau46, 137–146 (1957).

    Google Scholar 

  • Taylor, G. I.: The motion of ellipsoidal particles in a viscous fluid. Proc. Roy.. Soc. (London) A103, 58–61 (1923).

    Google Scholar 

  • Terzhagi, K.: Simple tests determine hydrostatic uplift. Eng. News-Record116, 501–523 (1936).

    Google Scholar 

  • Thayer, T. P.: Some critical differences between alpine type and stratiform peridotitegabbro complexes: Rept. XXIst Session Internat. Geol. Congr. Copenhagen, part 13, 247–259 (1960).

  • —: Flow-layering in alpine peridotite-gabbro complexes. Mineral. Soc. Am. Spec. Paper1, 55–61 (1963).

    Google Scholar 

  • Turner, F. J.: Preferred orientation of olivine crystals in peridotites, with special reference to New Zealand examples. Roy. Soc. New Zealand Proc. Trans.72, 280–300 (1942).

    Google Scholar 

  • —,H. C. Heard, andD. T. Griggs: Experimental deformation of enstatite and accompanying inversion to clinoenstatite. Rept. XXIst Session Internat. Geol. Congr. Copenhagen, part 18, 399–408 (1960).

  • —, andL. E. Weiss: Structural analysis of metamorphic tectonites. New York: McGrawHill Book Co. 1963. 545 p.

    Google Scholar 

  • Weiss, L. E., andD. B. McIntyre: Structural geometry of Dalradian rocks at Loch Leven, Scottish Highlands. J. Geol.65, 575–602 (1957).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raleigh, C.B. Structure and petrology of an alpine peridotite on Cypress Island, Washington, U.S.A. Beitr Mineral u Petrogr 11, 719–741 (1965). https://doi.org/10.1007/BF01128711

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01128711

Keywords

Navigation