Skip to main content
Log in

Models of source currents in the brain

  • Published:
Brain Topography Aims and scope Submit manuscript

Summary

Electroencephalography (EEG) and magnetoencephalography (MEG) provide signals that are weighted integrals of source currents in the brain. In addition to technical aspects, the two methods differ in their sensitivities to various cerebral sources. Moreover, it is more difficult to determine the lead fields of EEG than of MEG. If it can be assumed that only one localized source is active at a particular time, the source location, direction, and amplitude can be found with the dipole model. However, if the assumption of a single localized source is violated, erroneous results are obtained. If a few sources are responsible for the measured fields, multiple-dipole models can be used. In the general case one must start from the fundamentals of estimation theory. The use of a priori information, together with experimental data, will provide the best possible solution to the inverse problem. In the case of minimal prior information, the so-called minimum-norm solution is obtained. With the help of supplementary information, the resolution can be further improved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahlfors, S.P., Ilmoniemi, R.J. and Hämäläinen, M.S. Estimates of visually evoked cortical currents. Electroenceph. Clin. Neurophysiol., 1992, 82: 225–236.

    PubMed  Google Scholar 

  • Barth, D.S., Sutherling, W., Engel, Jr., J. and Beatty, J. Neuromagnetic localization of epileptiform spike activity in the human brain. Science, 1982, 218: 891–894.

    PubMed  Google Scholar 

  • Brenner, D., Lipton, J., Kaufman, L. and Williamson, S.J. Somatically evoked magnetic fields of the human brain. Science, 1978, 199: 81–83.

    Google Scholar 

  • Chapman, R.M., Ilmoniemi, R.J., Barbanera, S. and Romani, G.L. Selective localization of alpha brain activity with neuromagnetic measurements. Electroenceph. Clin. Neurophysiol., 1984, 58: 569–572.

    PubMed  Google Scholar 

  • Cohen, D., Cuffin, B.N., Yunokuchi, K., Maniewski, R., Purcell, C., Cosgrove, G.R., Ives, J., Kennedy, J.G. and Schomer, D.L. MEG versus EEG localization test using implanted sources in the human brain. Ann. Neurol., 1990, 28: 811–817.

    PubMed  Google Scholar 

  • Cuffin, B.N. Effects of fissures in the brain on electroencephalograms and magnetoencephalograms. J. Appl. Phys., 1985, 57: 146–153.

    Google Scholar 

  • de Munck, J.C. The estimation of time varying dipoles on the basis of evoked potentials. Electroenceph. Clin. Neurophysiol., 1990, 77: 156–160.

    PubMed  Google Scholar 

  • Hämäläinen, M.S. and Ilmoniemi, R.J. Interpreting measured magnetic fields of the brain: estimates of current distributions. Helsinki Univiversity of Technology, Report TKK-F-A559, 1984.

  • Hämäläinen, M.S. Magnetoencephalography - A tool for functional brain imaging. Brain Topogr., 1993, 5(2): 95–102.

    Google Scholar 

  • Hari, R., Kaila, K., Katila, T., Tuomisto, T. and Varpula, T. Interstimulus interval dependence of the auditory vertex response and its magnetic counterpart: Implications for their neural generation. Electroenceph. Clin. Neurophysiol., 1982, 54: 561–569.

    PubMed  Google Scholar 

  • Helmholtz, H. Ueber einige Gesetze der Vertheilung elektrischer Ströme in körperlichen Leitern, mit Anwendung auf die thierisch-elektrischen Versuche. Ann. Phys. Chem., 1853, 89: 211–233, 353–377.

    Google Scholar 

  • Ilmoniemi, R.J. Estimates of neuronal current distributions. Acta Otolaryng. (Stockh), 1991, Suppl. 491: 80–87.

    Google Scholar 

  • Kajola, M., Ahlfors, S., Ehnholm, G.J., Hällström, J., Hämäläinen, M.S., Ilmoniemi, R.J., Kiviranta, M., Knuutila, J., Lounasmaa, O.V., Tesche, C.D. and Vilkman, V. A 24-channel magnetometer for brain research. In: S.J. Williamson, M. Hoke, G. Stroink and M. Kotani (Eds.), Advances in Biomagnetism, Plenum, New York, 1989: 673–676.

    Google Scholar 

  • Maier, J., Dagnelie, G., Spekreijse, H. and van Dijk, B.W. Principal components analysis for source localization of VEPs in man. Vision Res., 1987, 27: 165–177.

    PubMed  Google Scholar 

  • Modena, I., Ricci, G.B., Barbanera, S., Leoni, R., Romani, G.L. and Carelli, P. Biomagnetic measurements of spontaneous brain activity in epileptic patients. Electroenceph. Clin. Neurophysiol., 1982, 54: 622–628.

    PubMed  Google Scholar 

  • Mosher, J.C., Lewis, P.S. and Leahy, R.M. Multiple dipole modeling and localization from spatio-temporal MEG data. IEEE Trans. Biomed. Eng., 1992, 39: 541–557.

    PubMed  Google Scholar 

  • Näätänen, R. and Picton, T. The N1 wave of the human electric and magnetic response to sound: A review and an analysis of the component structure. Psychophysiology, 1987, 24: 375–425.

    PubMed  Google Scholar 

  • Nenonen, J., Salkola, M. and Katila, T. On the current multipole expansion of biomagnetic fields. Med. & Biol. Eng. & Comput., 1985, 23 Suppl., Part 1: 20–21.

    Google Scholar 

  • Okada, Y.C., Williamson, S.J. and Kaufman, L. Magnetic field of the human sensorimotor cortex. Intern. J. Neurosci., 1982, 17: 33–38.

    Google Scholar 

  • Okada, Y. Discrimination of localized and distributed current dipole sources and localized single and multiple sources. In: H. Weinberg, G. Stroink and T. Katila (Eds.), Biomagnetism: Applications & Theory, Pergamon Press, New York, 1985: 266–272.

    Google Scholar 

  • Paetau, R., Kajola, M. and Hari, R. Magnetoencephalography in the study of epilepsy. Neurophysiol. Clin., 1990, 20: 169–187.

    PubMed  Google Scholar 

  • Pantev, C., Hoke, M., Lütkenhöner, B. and Lehnertz, K. Tonotopic organization of the auditory cortex: Pitch versus frequency representation. Science, 1989, 246: 486–488.

    PubMed  Google Scholar 

  • Romani, G.L., Williamson, S.J. and Kaufman, L. Tonotopic organization of the human auditory cortex. Science, 1982, 216: 1339–1340.

    PubMed  Google Scholar 

  • Scherg, M. Fundamentals of dipole source potential analysis. In: F. Grandori, M. Hoke and G.L. Romani (Eds.), Auditory Evoked Magnetic Fields and Electric Potentials, Karger, Basel, 1990: 40–69.

    Google Scholar 

  • Tarantola, A. Inverse Problem Theory. Elsevier, Amsterdam, 1987.

    Google Scholar 

  • Wang, J.-Z., Williamson, S.J. and Kaufman, L. Magnetic source images determined by a lead-field analysis: The unique minimum-norm least-squares estimation. IEEE Trans. Biomed. Eng., 1992, 39: 665–675.

    PubMed  Google Scholar 

  • Williamson, S.J., Lü, Z.-L., Karron, D. and Kaufman, L. Advantages and limitations of magnetic source imaging. Brain Topography, 1991, 4: 169–180.

    PubMed  Google Scholar 

  • Wood, C.C., Cohen, D., Cuffin, B.N., Yarita, M. and Allison, T. Electrical sources in human somatosensory cortex: Identification by combined magnetic and potential recordings. Science, 1985, 227: 1051–1053.

    PubMed  Google Scholar 

  • Yamamoto, T., Williamson, S.J., Kaufman, L., Nicholson, C. and Llinás, R. Magnetic localization of neuronal activity in the human brain. Proc. Natl. Acad. Sci. USA, 1988, 85: 8732–8736.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The critical reading of the manuscript by Seppo Ahlfors, Matti Hämäläinen, Olli Lounasmaa, and Claudia Tesche is gratefully acknowledged.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ilmoniemi, R.J. Models of source currents in the brain. Brain Topogr 5, 331–336 (1993). https://doi.org/10.1007/BF01128686

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01128686

Key words

Navigation