Skip to main content
Log in

Investigation of the dynamics of a laser-supported detonation wave using a self-consistent numerical model

  • Published:
Journal of Soviet Laser Research Aims and scope

Abstract

Results are reported of a computational—theoretical analysis of the dynamics (propagation and decay) of laser-supported detonation waves (LSDW) in focused laser beams. The investigations were carried out using a self-consistent numerical model that takes account of the gasdynamic motion of the plasma and the refraction and absorption of the radiation in the plasma, with allowance for its real equation of state. An analysis is presented of the influence of the radial structure of the radiation on the propagation and decay of the LSDW, and of the conditions of the radiation transformation. Results on the dynamics of two-dimensional LSDW in the beam of an excimer laser are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  1. V. M. Golovizin, M. A. Ryazanov, and O. S. Sorokovikova, “Fully conservative differential-difference gasdynamics schemes in mixed Euler-Lagrange variables,” Preprint No. 19, Keldysh Applied Mathematics Institute, Academy of Sciences of the USSR, Moscow (1982).

    Google Scholar 

  2. M. A. Ryazanov, O. S, Sorokovikova, V. I. Cherezov, and S. Yu. Chernov, “Balanced gasdynamics difference schemes,” in: Mathematical Models and Computation Methods [in Russian], Moscow University (1987), pp. 246–260.

  3. V. V. Belikov, V. M. Goloviznin, M. F. Kanevskii, A. A. Samarskii, and S. Yu. Chernov, “Use of adaptive lattices for the solution of certain two-dimensional gasdynamics problems,” Preprint No. 138, Keldysh Applied Mathematics Institute, Academy of Sciences of the USSR, Moscow (1988).

    Google Scholar 

  4. V. V. Belikov, V. M. Goloviznin, M. F. Kanevskii, A. A. Samarskii, and S. Yu. Chernov, “Calculations of one-dimensional laser-driven detonation waves using adaptive lattices,” Preprint No. 139, Keldysh Applied Mathematics Institute, Academy of Sciences of the USSR, Moscow (1988).

    Google Scholar 

  5. R. V. Arutyunyan, L. A. Bol'shov, V. M. Goloviznin, M. F. Kanevskii, and S. Yu. Chernov, “Dynamics of detonation wave in a focused laser beam,” Preprint No. 4454/7, Atomic Energy Institute (1987).

  6. V. N. Anisimov, R. V. Arutynyan, L. A. Bol'shov, et al., “Nonstationary absorption and refraction of laser radiation in low-threshold optical breakdown plasma,” Zh. Tekh. Fiz.,59, No. 1, 72–79 (1989).

    Google Scholar 

  7. V. N. Anisimov, R. V. Arutyunyan, A. A. Bol'shov, et al., “Influence of spatial structure of laser radiation on the dynamics of low-threshold optical breakdown,” Izv, Akad. Nauk SSSR,53, No. 3, 491–495 (1989).

    Google Scholar 

  8. V. N. Anisimov, L. A. Bol'shov, O. N. Derkach, et al. “Influence of Spatial distribution of pulsed CO2-laser radiation on the dynamics of laser absorption waves in a magnetic-breakdown plasma, Preprint No. 4592/7, Atomic Energy Institute (1988).

  9. L. A. Bol'shov, V. A. Vorob'ev, M. F. Kanevskii, V. D. Kanyukova, and A. I. Yudin, “Numerical simulation of laser radiation propagation in an inhomogeneous absorbing medium (geometric-optics approximation), Preprint No. 4732/16, Atomic Energy Institute (1988).

  10. L. A. Bol'shov, V. A. Vorob'ev, V. M. Goloviznin, M. F. Kanevskii, V. D. Kanyukova, and A. I. Yudin, “Simulation of laser-radiation propagation in a plasma in the geometric-optics approximation,” Matematicheskoe Modelirovanie,1, No. 5, 1–10 (1989).

    Google Scholar 

  11. R. V. Arutyunyan, L. A. Bol'shov, V. A. Dolgov, et al., “Influence of surface breakdown plasma on metal drilling by pulsed CO2-laser radiation,” Kvantovaya Élektron. (Moscow),15, No. 3, 539–544 (1988).

    Google Scholar 

  12. A. A. Vorob'ev, M. F. Kanevskii, and S. Yu. Chernov. “Simulation of refraction and absorption of laser radiation in a low-temperature plasma,” Preprint No. 4931/16, Atomic Energy Institute (1989).

  13. A. Vorob'ev, M. F. Kanevskii, and S. Yu. Chernov, “Numerical simulation of nonstationary gasdynamic and optical processes in a low-temperature laser plasma,” Preprint No. 5003/26, Atomic Energy Institute (1990).

  14. L. A. Bolshov, M. F. Kanevsky, V. A. Voror'ev, and A. I. Yudin, “Numerical simulation of transient optical processes in laser fusion plasma,” Intl. Conf. Plasma Phys., Book of Contr. Papers, 117–171 (1983).

  15. V. A. Danilychev and V. D. Zvorykin, “Experimental investigation of radiation—gasdynamic processes produced by action of laser pulses with λ=10.6 μm on solid matter in a gas medium,” Trudy FIAN,142, 117–171 (1983).

    Google Scholar 

  16. L. D. Landau and E. M. Lifshitz, Hydrodynamics, Pergamon (1988).

  17. Yu. P. Raizer, Laser-Induced Discharge Phenomena, Consultants Bureau (1977).

  18. G. I. Kozlov, “Investigation of gas breakdown by pulsed CO2 laser radiation,” Zh. Tekh. Fiz.,49, 67 (1979).

    Google Scholar 

  19. V. P. Ageev, S. G. Burdin, I. N. Goncharov, et al., Interaction of High-Power Pulsed Laser Radiation with Solids in Gases [in Russian], VINITI, Moscow (1983).

    Google Scholar 

  20. S. A. Ramsden and P. A. Savic, “A radiative detonation model for the development of a laser-induced spark in air,” Nature,203, 1217–1219 (1964).

    Google Scholar 

  21. P. S. P. Wei, R. B. Hall, and W. E. Maher, “Study of laser-supported detonation waves by time-resolved spectroscopy,” J. Chem. Phys.,59, 3692–3700 (1973).

    Google Scholar 

  22. W. E. Maher, R. B. Hall, and R. R. Johnson, “Experimental study of ignition and propagation of laser-supported detonation waves,” J. Appl. Phys.,45, 2138–2145 (1974).

    Google Scholar 

  23. P. S. P. Wei and R. B. Hall, “Emission spectra of laser-supported detonation waves,” J. Appl. Phys.,44, No. 5, 2311–2314 (1973).

    Google Scholar 

  24. A. L. Velikovich and M. A. Liberman, Physics of Shock Waves in Gases and Plasma [in Russian], Nauka, Moscow (1987).

    Google Scholar 

  25. W. Fickett and W. C. Davis, Detonation, Berkley Univ. Press (1979).

  26. D. C. Hamilton, D. J. James, and S. A. Ramsden, “The effect of radial losses on the propagation of CO2 laser-supported detonation waves,” J. Phys. D.,10, 1011–1015 (1977).

    Google Scholar 

  27. V. I. Konov and A. S. Silenok, “Investigation of pulsed optical discharges in regimes with lateral expansion,” Fiz. Plazmy,11, 600–609 (1985).

    Google Scholar 

  28. I. A. Bufetov, A. M. Prokhorov, V. B. Fedorov, and V. K. Fomin, “Optical discharge under limited lateral expansion of the gas and lowering of the laser-supported detonation threshold,” Pis'ma Zh. Éksp. Fiz.,39, No. 5, 216–219 (1984).

    Google Scholar 

  29. I. E. Markovich, A. I. Petrukhin, Yu. E. Pleshanov, and V. A. Rybakov, “Experimental investigations of the onset and propagation of ‘optical combustion’ wave and its transformation into a laser-supported detonation wave,” Fiz. Goreniya Vzryva,16, No. 4, 30–37 (1979).

    Google Scholar 

  30. R. V, Arutynyan, L. A. Bol'shov, V. M. Goloviznin, M. F. Kanevskii, and S. Yu. Chernov, “Dynamics of detonation wave in a focused laser beam,” Atomic Energy Inst. Preprint No. 4454/7 (1987).

  31. N. Ferriter, d. Meidn, A. Winslow, and J. Fleck, Jr.: “Optimization of laser-beam parameters in momentum transfer by a laser-supported detonation wave,” Raketn. Tekh. Kosmon.,15, No. 11, 75–83 (1977).

    Google Scholar 

  32. S. M. Bakhrakh, V. Yu. Kainov, S. B. Kormer, et al. “Numerical investigation of motion of a plasma absorbing optical radion on a shock-wave front,” Fiz. Plazmy,8, 262–269 (1982).

    Google Scholar 

  33. L. P. Markelova, I. V. Nemchinov, V. V. Novikova, et al., “Transformation from optical combustion to optical detonation,” Fiz. Goreniya Vzryva,18, No. 4, 37–49 (1979).

    Google Scholar 

  34. V. I. Fisher, “Optical detonation in gases,” Zh. Tekh. Fiz.,53, 2148 (1983).

    Google Scholar 

  35. A. N. Pirri, R. G. Root, and P. K. S. Yu, “Energy transfer to laser-pulse irradiated metallic surfaces through a plasma,” Raketn. Tekh. Kosmon.,16, No. 2, 101–113 (1978).

    Google Scholar 

  36. A. F. Goncharenko, I. V. Nemchinov, and V. M. Khazins, “Calculation of gas motion behind an optical-detonation front with allowance for lateral expansion of the plasma column,” Zh. Prikl. Mekh. Tekh. Fiz., No. 3, 18–27 (1976).

    Google Scholar 

  37. G. S. Romanov and Yu. A. Stankevich, “Evolution of optical detonation in a flare produced by the action of laser radiation on an absorbing partition,” in: Dynamics of Continuous Medium [in Russian], No. 29, Novosibirsk (1977), pp. 102–109.

  38. S. Romanov, Yu. A. Stankevich, and A. V. Teterev, “Calculation of nonstationary axisymmetric plasma flare in optical-detonation regime,” Dokl. Akad. Nauk BSSR,21, No. 6, 503–506 (1977).

    Google Scholar 

  39. P. Bournot, P. A. Pincosy, G. Inglesakis, et al., “Propagation of laser-supported detonation wave,” Acta Astronautica,6, 257–267 (1979).

    Google Scholar 

  40. D. Apostol, I. Apostol, D. Barbulesku, et al., “An interferometric electron density estimate of a TE-CO2 laser sustained plasma in front of a metallic target,” Opt. Commun.,44, 333–336 (1983).

    Google Scholar 

  41. C. T. Walters, R. H. Barnes, and R. E. Beverley, III, “Initiation of laser-supported-detonation (LSD) waves,” J. Appl. Phys.,49, No. 5, 2937–2949 (1978).

    Google Scholar 

  42. R. E. Beverley, III and C. T. Walters, “Measurement of CO2 laser induced shock pressure above and below LSD-wave threshold,” J. Appl. Phys.,47, No. 8, 3485–3495 (1976).

    Google Scholar 

  43. B. S. Holmes and D. C. Erlich, “Surface pressures from laser-supported detonations,” J. Appl. Phys.,48, 2396–2403.

  44. A. N. Pirri, “Theory for momentum transfer to a surface with a high-power laser,” Phys. Fluids,16, No. 9, 1435–1440 (1973).

    Google Scholar 

  45. Chu Meng'u and Abe Kanji, “Comparison between laser-supported detonation and blast waves for laser propulsion,” J. Propulsion,5, No. 3, 282–286 (1989).

    Google Scholar 

  46. C. L. Bohn and M. L. Crawford, “A computational study of laser-supported detonation waves propagation up an oblique incident beam,” J. Appl. Phys.,61, No. 2, 805–807 (1987).

    Google Scholar 

  47. V. A. Danilov, V. A. Danilychev, V. A. Dolgikh, et al., “Evaporation of targets and formation of absorption waves in air by the action UV laser radiation,” Kvantovaya Élektron. (Moscow),15, No. 12, 2568–2574 (1988).

    Google Scholar 

  48. S. S. Katsnel'son and G. A. Koval'skaya, Thermophysical and Optical Properties of Argon Plasma [in Russian], Nauka, Novosibirsk (1985).

    Google Scholar 

  49. M. C. Fowler and D. C. Smith, “Ignition and maintenance of subsonic plasma waves in atmospheric pressure air by cw CO2-laser radiation and their effect on laser beam propagation,” J. Appl. Phys.,46, 138–150 (1975).

    Google Scholar 

  50. A. F. Glova, F. V. Lebedev, and V. P. Yartsev, “Refraction of laser radiation by an optical-discharge plasma,” Kvantovaya Élektron. (Moscow),12, No. 12, 2471–2473 (1985).

    Google Scholar 

  51. E. V. Dan'shchikov, V. A. Dyshakov, F. V. Lebedev, and A. V. Ryazanov, ”Passage of laser through an optical discharge plasma and channel model of a discharge,”ibid.,12, No. 9, 1846–1855 (1985).

    Google Scholar 

  52. D. Kiefer, R. Wells, and C. Peters, “Power absorption by a laser argon plasma,” Aerokosm. Tekh., No. 6, 149–156 (1987).

    Google Scholar 

  53. H. Krier, J. Mazumder, T. J. Rockstroh, et al. “Gas heating by a cw laser with the aid of plasma support in an argon stream,”ibid., No. 6, 140–148 (1987).

    Google Scholar 

  54. T. J. Rockstroh and J. Mazumder, “Spectroscopic studies of plasma during cw laser materials interaction,” J. Appl. Phys.,61, No. 3, 917–923 (1987).

    Google Scholar 

  55. V. Yu. Baranov, V. A. Dolgov, M. F. Kanevskii, D. D. Malyuta, S. S. Mezhevov, and V. V. Semak, “Investigation of spatiotemporal distribution of radiation on the surface of a target in the presence of an optical-discharge plasma,” in: Collected Scientific Papers, Atomic Energy Institute [in Russian], (1989), pp. 102–106.

Download references

Authors

Additional information

Translated from Preprint No. IAE-5066/6 of the Kurchatov Atomic Energy Institute, Moscow, 1990.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vorob'ev, V.A., Kanevskii, M.F. & Chernov, S.Y. Investigation of the dynamics of a laser-supported detonation wave using a self-consistent numerical model. J Russ Laser Res 12, 269–294 (1991). https://doi.org/10.1007/BF01128445

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01128445

Keywords

Navigation