Skip to main content
Log in

Doxorubicin and epirubicin iron-induced generation of free radicalsIn vitro. A comparative study

  • Short Papers
  • Published:
Bioscience Reports

Abstract

To ascertain any differences in myocardial injury exerted by the anthracyclines doxorubicin and epirubicin, their ability to generate oxygen free radicals when mixed with Fe(II) was examined in vitro using an oxygen electrode. 5–250 μg/ml doxorubicin or epirubicin consumed oxygen when mixed with 50 or 100 μmol/1 Fe(II). Addition of 75 μmol/1 cytochrome C showed that of the consumed oxygen, approximately 80% entered the monovalent pathway of oxygen reduction. The strong inhibitory effect of 250 mg/1 catalase indicates that most of the superoxide radicals generated are further reduced to hydrogen peroxide by both anthracyclines. Addition of metal chelators DTPA (100/μmol/1), or DDTC (50 μmol/1) did not affect oxygen consumption, whereas EDTA (100/μmol/1) or desferrioxamine (100 μmol/1) with anthracyclines and Fe(II) rather stimulated oxygen consumption. It is concluded that there are no significant differences in the amount or proportion of generated oxygen free radicals between doxorubicin and epirubicin when mixed with Fe(II) in a cell-free system in vitro. Thus, the ability of the anthracyclines, in conjunction with iron alone, to generate radicals does not explain the differences of the drugs in causing myocardial injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Babson, J. R., Abell, N. S. and Reed, D. J. (1981).Biochem. Pharmacol. 30:2299–2304.

    Google Scholar 

  • Bachur, N. R., Gordon, S. L. and Gee, M. V. (1977).Mol. Pharmacol 13:901–910.

    Google Scholar 

  • Bachur, N. R., Gordon, S. L. and Gee, M. V. (1978).Cancer Res. 38:1745–1750.

    Google Scholar 

  • Ballet, F., Robert, J., Bouma, M. E., Vrignaud, P. and Infante, R. (1986).Pharmacol. Res. Commun. 18:343–347.

    Google Scholar 

  • Berlin, V. and Hazeltine, W. A. (1981).J. Biol. Chem. 256:4747–4756.

    Google Scholar 

  • Bozzi, A., Mavelli, I., Mondovi, B., Strom, R. and Rotilo, G. (1981).Biochem. J. 194:369–372.

    Google Scholar 

  • Ganzine, F. (1983).Cancer Treat. Rev. 10:1–22.

    Google Scholar 

  • Herman, E. H., Ferrans, V. J., Myers, C. E. and van Vleet, J. F. (1985).Cancer Res. 45:276–281.

    Google Scholar 

  • von Hoff, D. D., Layartd, M. W., Basa, P., Davis, H. L., Rozencweig, M. and Muggia, F. M. (1979).Ann. Intern. Med. 91:710.

    Google Scholar 

  • Marklund, S. and Marklund, G. (1974).Eur. J. Biochem. 47:469–474.

    Google Scholar 

  • McGinnes, J. E., Proctor, P. H., Demopoulos, H. B., Hokanson, J. A. and Van, N. T. (1979). In:Proceedings of the Conference on Activated Oxygen and Medicine, Hawaii.

  • Muindi, J., Sinha, B. K., Gianni, L. and Myers, C. (1985).Mol., Pharmacol. 27:356–365.

    Google Scholar 

  • Myers, C. E., McGuire, W. P., Liss, R. H., Ifrim, I., Grotzinger, K. and Young, R. C. (1977).Science 197:165–167.

    Google Scholar 

  • Myers, C., Gianni, L., Zweier, J., Muindi, J., Sinha, B. K. and Eliot, H. (1986).Fed. Proc. 45:2792–2797.

    Google Scholar 

  • Myers, C. E., Gianni, L., Simone, C. B., Klecker, R. and Greene, R. (1982).Biochemistry 21:1707–1713.

    Google Scholar 

  • Olson, R. D., MacDonald, J. S., Harbison, R. D., van Boxtel, C. J., Boerth, R. C., Slonim, A. E. and Oates, J. A. (1977).Fed. Proc. 36:303.

    Google Scholar 

  • Revis, N. W. and Marusic, N. (1978).J. Mol. Cell. Cardiol. 10:945–951.

    Google Scholar 

  • Samejima, A. and Yang, J. T. (1963).J. Biol. Chem. 238:3256–3261.

    Google Scholar 

  • Schinetti, M. L., Rossini, J. D. and Bertelli, A. (1987).J. Cancer Res. Clin. Oncol. 113:15–19.

    Google Scholar 

  • Torti, F. M., Bristow, M. M., Lum, B. L., Carter, S. K., Howes, A. E., Aston, D. A., Brown, Jr, B. W., Hannigan, Jr, J. F., Meyers, F. J., Mitchell, E. P. and Billingham, M. E. (1986).Cancer Res. 46:3722–3727.

    Google Scholar 

  • Tritton, T. R., Yee, G. and Wingard, L. B. (1983).Fed. Proc. 42:284–287.

    Google Scholar 

  • Tritton, T. R. and Yee, G. (1982).Science 217:248–250.

    Google Scholar 

  • Trudgill, P. W. (1985). In:Handbook of Methods for Oxygen Radical Research (R. A. Greenwald, Ed.), CRC Press, Boca Raton, FL, pp. 329–342.

    Google Scholar 

  • Zweier, J. L. (1986).J. Biol. Chem. 259:6056–6058.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grankvist, K., Henriksson, R. Doxorubicin and epirubicin iron-induced generation of free radicalsIn vitro. A comparative study. Biosci Rep 7, 653–658 (1987). https://doi.org/10.1007/BF01127678

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01127678

Key Words

Navigation