Theoretica chimica acta

, Volume 84, Issue 6, pp 535–543 | Cite as

An algorithm for determining dynamically defined reaction paths (DDRP)

  • László L. Stachó
  • Miklós I. Bán


A numerically stable and well-parallelizable curve variational algorithm is described for determining tangent curves of vector fields between two given stationary points. In particular, the method is suitable for finding reaction paths and saddle points on potential energy hypersurfaces (PHS). The stability of the procedure is illustrated by an artificial mathematical function, showing phases of following the reaction on the PHS.

Key words

Potential energy hypersurface Reaction path Saddle point IRC 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lawley KP (ed) (1980) Potential energy surfaces. Wiley, NYGoogle Scholar
  2. 2.
    Truhlar DG (ed) (1981) Potential energy surfaces and dynamics calculations. Plenum, NYGoogle Scholar
  3. 3.
    Murrell JN, Carter S, Farantos SC, Huxley P, Varandas AJC (1984) Molecular potential energy functions. Wiley, NYGoogle Scholar
  4. 4.
    Hirst DM (1985) Potential energy surfaces: Molecular structure and reaction dynamics. Taylor & Francis, London, PhiladelphiaGoogle Scholar
  5. 5.
    Jørgensen P, Simons J (1985) Geometrical derivatives of energy surfaces and molecular properties. Reidel, DordrechtGoogle Scholar
  6. 6.
    Mezey PG (1987) Potential energy hypersurfaces. Elsevier, AmsterdamGoogle Scholar
  7. 7.
    Kraka E, Dunning TH Jr (1990) Characterization of molecular potential energy surfaces: Critical points, reaction paths and reaction valleys. In: Advances in molecular electronic structure theory, Vol 1, p 129–173, JAI Press IncGoogle Scholar
  8. 8.
    Scharfenberg P (1980) Theor Chim Acta 57:735Google Scholar
  9. 9.
    Sana M, Reckinger G, Leroy G (1981) Theor Chim Acta 58:145Google Scholar
  10. 10.
    Bell S, Crighton JS (1984) J Chem Phys 80:2464Google Scholar
  11. 11.
    Baker J (1986) J Comp Chem 7:385Google Scholar
  12. 12.
    Baker J, Gill PMW (1988) J Comp Chem 9:465Google Scholar
  13. 13.
    Kliesch W, Schenk K, Heidrich D, Dachsel H (1988) J Comp Chem 9:810Google Scholar
  14. 14.
    Jasien PG, Shepard R (1988) Int J Quantum Chem Quantum Chem Symp 22:183Google Scholar
  15. 15.
    Cummins PL, Gready JE (1989) J Comp Chem 10:939Google Scholar
  16. 16.
    Silver DM (1966) J Chem Phys 57:586Google Scholar
  17. 17.
    McCullogh EA Jr, Silver DM (1975) J Chem Phys 62:4050Google Scholar
  18. 18.
    Fukui K, Kato S, Fujimoto H (1975) J Am Chem Soc 97:1Google Scholar
  19. 19.
    Fukui K (1981) Int J Quantum Chem 51:633Google Scholar
  20. 20.
    Schlegel BH (1987) Adv Chem Phys 67:249Google Scholar
  21. 21.
    Ishida K, Morokuma K, Komornicki A (1977) J Chem Phys 66:2153Google Scholar
  22. 22.
    Valtazanos P, Elbert ST, Xantheas S, Ruedenberg K (1991) Theor Chim Acta 78:287Google Scholar
  23. 23.
    Xantheas S, Valtazanos P, Ruedenberg K (1991) Theor Chim Acta 78:327Google Scholar
  24. 24.
    Xantheas S, Elbert ST, Ruedenberg K (1991) Theor Chim Acta 78:365Google Scholar
  25. 25.
    Valtazanos P, Ruedenberg K (1991) Theor Chim Acta 78:397Google Scholar
  26. 26.
    see e.g. Dewar MJS (1971) J Am Chem Soc 93: 4294; Bálint I, Bán MI (1983) Int J Quantum Chem 24:161Google Scholar
  27. 27.
    see e.g. McIver JW, Komornicki A (1974) J Am Chem Soc 96:5798; Bálint I, Bán MI (1983) Theor Chim Acta 63:255; Bálint I, Bán MI (1984) Int J Quantum Chem 25:667Google Scholar
  28. 28.
    Stachó LL, Bán MI (1992) Theor Chim Acta 83:433Google Scholar
  29. 29.
    Stachó LL, Bán MI (1992) J Math Chem 11:405Google Scholar
  30. 30.
    Palis J, de Melo W (1980) Geometric theory of dynamical systems. Springer, NYGoogle Scholar
  31. 31.
    Mezey PG (1981) Theor Chim Acta 58:309Google Scholar
  32. 32.
    Mezey PG (1982) Theor Chim Acta 62:133Google Scholar
  33. 33.
    Stachó LL, Bán MI Computers Chem (to appear)Google Scholar
  34. 34.
    Tachibana A, Fukui K (1978) Theor Chim Acta 49:321Google Scholar
  35. 35.
    Quapp W, Heidrich D (1984) Theor Chim Acta 66:245Google Scholar
  36. 36.
    Dömötör G, Stachó LL, Bán MI (1992) J Comp Chem (in preparation)Google Scholar
  37. 37.
    see ref. [6] p 285–289, p 409–418Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • László L. Stachó
    • 1
  • Miklós I. Bán
    • 2
  1. 1.Bolyai InstituteJózsef Attila UniversitySzegedHungary
  2. 2.Institute of Physical ChemistryJózsef Attila UniversitySzegedHungary

Personalised recommendations