Advertisement

Theoretica chimica acta

, Volume 84, Issue 6, pp 521–533 | Cite as

Maximum bond order hybrid orbitals II. Correlativity with C-H and C-C spin-coupling constants

  • Zhen-Min Hu
  • Chang-Guo Zhan
Article

Summary

The excellent correlativity between the maximum bond order hybrid orbitals and the nuclear spin-spin coupling constants of directly bonded C-H and C-C is shown in the present paper. The maximum bond order hybrid orbital procedure is performed by use of the first-order density matrices obtained from CNDO/2 calculation to get the bonding hybrid orbitals and the corresponding maximum bond orders for a number of hydrocarbons and hetero-substituted hydrocarbons. The relations between the obtained calculation results and the experimental coupling constants are examined by using the basic relationships proposed by Muller and Pritchard, by Maksic et al. and by Gil, and summarized in the concrete relationships which are the most suitable for the maximum bond order hybrid orbital calculation. The obtained relationships combined with the maximum bond order hybrid orbital calculation is quite successful in predicting substituent effects on the C-H and C-C coupling constants in molecules which contain no substituents of the −I type.

Key words

Hybridization Maximum bond order Maximum bond order hybrid orbital NMR Nuclear spin coupling constant 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ramsey NF (1953) Phys Rev 91:303Google Scholar
  2. 2.
    Muller N, Pritchard DE (1959) J Chem Phys 31:768Google Scholar
  3. 3.
    Muller N, Prichard DE (1959) J Chem Phys 31:1471Google Scholar
  4. 4.
    Shoolery JN (1959) J Chem Phys 31:1427Google Scholar
  5. 5.
    Frei K, Bernstein HI (1963) J Chem Phys 38:1216Google Scholar
  6. 6.
    Gunther H, Herrig W (1973) Chem Ber 106:3938Google Scholar
  7. 7.
    Juan C, Gutowsky HS (1962) J Chem Phys 37:2198Google Scholar
  8. 8.
    Goldstein JH, Hobgood RT Jr (1964) J Chem Phys 40:3592Google Scholar
  9. 9.
    Grant DM, Litchman WM (1965) J Am Chem Soc 87:3994Google Scholar
  10. 10.
    Cyr N, Cyr TJR (1967) J Chem Phys 47:3082Google Scholar
  11. 11.
    Newton DM, Schulman JMJ (1974) Am Chem Soc 96:17Google Scholar
  12. 12.
    Schulman JM, Newton DM (1974) J Am Chem Soc 96:6295Google Scholar
  13. 13.
    Lee WS, Schulman JM (1980) J Am Chem Soc 102:5184Google Scholar
  14. 14.
    Lee WS, Schulman JM (1979) J Am Chem Soc 101:3182Google Scholar
  15. 15.
    Maksic ZB, Eckert-Maksic M, Randic M (1971) Theor Chim Acta 22:70Google Scholar
  16. 16.
    Maksic ZB (1971) Int J Quantum Chem Symp 5:301Google Scholar
  17. 17.
    Kovacevic K, Krmpotic K, Maksic ZB (1977) Inorg Chem 16:1421Google Scholar
  18. 18.
    Kovacevic K, Maksic ZB (1973) J Mol Struct 17:203Google Scholar
  19. 19.
    Eckert-Maksic M, Kovacevic K, Maksic ZB (1979) J Organomet Chem 168:295Google Scholar
  20. 20.
    Figeys HP, Geerling P, Paeymaekers P, Vanlommen G, Defay N (1975) Tetrahedron 31:1731Google Scholar
  21. 21.
    Alsenoy C Van, Figeys HP, Geerlings P (1980) Theoret Chim Acta 55:87Google Scholar
  22. 22.
    Pople JA, McIver JW Jr, Ostlund NS (1968) J Chem Phys 49:2965Google Scholar
  23. 23.
    Maciel GE, McIver JW Jr, Ostlund NS, Pople JA (1970) J Am Chem Soc 92:1Google Scholar
  24. 24.
    Maciel GE, McIver JW Jr, Ostlund NS, Pople JA (1970) J Am Chem Soc 92:11Google Scholar
  25. 25.
    Ellis PA, Maciel GE (1970) J Am Chem Soc 92:5829Google Scholar
  26. 26.
    Laaksonen A, Kowalewski J, Siegbahn P (1980) Chem Phys Lett 69:109Google Scholar
  27. 27.
    Laaksonen A, Kowalewski J (1981) J Am Chem Soc 103:5277Google Scholar
  28. 28.
    Gil VMS (1989) Theor Chim Acta 76:291Google Scholar
  29. 29.
    Kamienska-Treta K, Enierien B (1980) J Organomet Chem 198:25Google Scholar
  30. 30.
    Biedrzycka Z, Kamienska-Trela K (1986) Spectrochim Acta, Part A, 42A:1323Google Scholar
  31. 31.
    Kamienska-Trela K (1980) Org Magn Chem 14:398Google Scholar
  32. 32.
    Kamienska-Trela K, Gluzinski P (1986) Groat Chem Acta 59:883Google Scholar
  33. 33.
    Pauling L (1931) J Am Chem Soc 53:1367Google Scholar
  34. 34.
    Herman ZS, Pauling L (1984) Croat Chem Acta 57:765Google Scholar
  35. 35.
    Foster JP, Weinhold F (1980) J Am Chem Soc 102:7211Google Scholar
  36. 36.
    Zhan, CG, Wang QL, Zheng F (1990) Theor Chim Acta 78:129Google Scholar
  37. 37.
    Jug K (1977) J Am Chem Soc 99:7800Google Scholar
  38. 38.
    Zhan CG, Hu ZM (1993) Theor Chim Acta 84:511Google Scholar
  39. 39.
    Pople JA, Beveridge DL (1970) Approximate molecular orbital theory. McGraw-Hill, NYGoogle Scholar
  40. 40.
    Sutton LE (1958) Tables of Interatomic Distances and Configuration in Molecules and Ions. Chem. Soc, London, Special Pub No 11; (1965) Special Pub No 18.Google Scholar
  41. 41.
    Bent HA (1961) Chem Rev 61:275Google Scholar
  42. 42.
    Pople JA, Gordon M (1967) J Am Chem Soc 89:4253Google Scholar
  43. 43.
    Brown TL, Puckett JC (1966) J Chem Phys 44:2238Google Scholar
  44. 44.
    Foote CS (1963) Tetrahedron Lett 9:579Google Scholar
  45. 45.
    Yonezawa T, Morishima I (1968) J Mol Spect 27:210Google Scholar
  46. 46.
    Laaksonen A, Kowalewski J, Saunder VR (1983) Chem Phys 80:221Google Scholar
  47. 47.
    Grasselli JG, Ritchey WM (1975) Atlas of Spectral Data and Physical Constants for Org. Compounds, 2nd ed. CRC Press Inc., Ohio, Vol IGoogle Scholar
  48. 48.
    Kamienska-Trela K (1980) Spectrochim. Acta 36A:239Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • Zhen-Min Hu
    • 1
    • 2
  • Chang-Guo Zhan
    • 1
  1. 1.Department of ChemistryCentral China Normal UniversityWuhanThe People's Republic of China
  2. 2.Departmjent of ChemistryHubei Normal UniversityHuangshiThe People's Republic of China

Personalised recommendations