Fu, S.: Dissertation, in preparation.
Huo, Y.-Z.: On the thermodynamics of pseudoelasticity, Dissertation, TU Berlin, 1992.
Müller, I.: On the size of the hysteresis in pseudoelasticity, Cont. Mech. Thermodyn. 1 (1989), 125–142.
Google Scholar
Funakubo, H. (ed.).: Shape memory alloys, Gordon and Breach Sci. Publ., London, 1987.
Google Scholar
de Groot, S. E. and P. Mazur: Non-equilibrium thermodynamics, North-Holland Publ., Amsterdam, 1962.
Google Scholar
Müller, I.: Thermodynamics, Pitman Publ., London, 1985.
Google Scholar
Christian, J. W.: The theory of transformations in metal and alloys, Pergamon Press, 1965.
Nishiyama, Z.: Martensitic transformations, Acad. Press, New York, 1978.
Google Scholar
Tolédano, J. C. and P. Tolédano: The Landau theory of phase transition, World Sci. Publ. Singapore, 1987.
Falk, F.: Model free energy, mechanics and thermodynamics of shape memory alloys. Acta Metall. 28 (1980).
Visintin, A.: Mathematical models of hysteresis. In: Topics in non-smooth mechanics, (J. J. Moreau, P. D. Panagiotopoulos, G. Strang, eds.), Birkhäuser, Basel (1987), 295–326.
Google Scholar
Krasnosel'skií, M. A. and A. V. Pokrovskií: Systems with hysteresis, Springer, Berlin, 1989.
Google Scholar
Mayergoyz, I. D.: Mathematical models of hysteresis, Springer, New York, 1991.
Google Scholar
Huo, Y.-Z.: A mathematical model for the hysteresis in shape memory alloys, Cont. Mech. Thermodyn. 1 (1989), 283–303.
Google Scholar
Ortín, J.: Preisach modelling of hysteresis for a pseudoelastic Cu−Zn−Al single crystal, J. Appl. Phys. 71 (1992), 1454–1461.
Google Scholar
Lü, L.; E. Aernoudt and L. Delaey: Hysteresis effects of martensitic transformation during thermomechanical cycling, Scr. metall. 22 (1988), 1435–1440.
Google Scholar
Cesari, E.; J. Pons and C. Segni: Simple model of hysteresis in thermoelastic martensitic transformation. J. de Phys. IV, Colloque C4. 1 (1991), 41–46.
Google Scholar
Eshelby, J. D.: The determination of the elastic field of an ellipsoidal inclusion, and related problem, Proc. Roy. Soc., A, 241 (1957), 376–396.
Google Scholar
Ling, H. C. and W. S. Owen: A model of the thermoelastic growth of martensite, Acta Metall., 29 (1981), 1721–1736.
Google Scholar
Deng, Y. and G. S. Ansell: Investigation of thermoelastic martensitic transformations in a Cu−Zn−Al alloy, Acta Metall. 38 (1990), 69–76.
Google Scholar
Liu, I. S.: On interface equilibrium and inclusion problems, Cont. Mech. Thermodyn. 4 (1992), 177–186.
Google Scholar
Robin, P. F.: Thermodynamic equilibrium across a coherent interface in a stresses crystal, Am. Miner., 59 (1974); 1286–1298.
Google Scholar
Larché, F. and J. W. Cahn: A linear theory of thermodynamical equilibrium of solids under stress, Acta Metall., 21 (1973), 1051–1063.
Google Scholar
Larché, F. and J. W. Cahn: A nonlinear theory of thermodynamical equilibrium of solids under stress, Acta Metall. 26 (1978), 53–60.
Google Scholar
Larché, F. and J. W. Chan: Thermodynamical equilibrium of multiphase solids under stress, Acta Metall. 26 (1978), 1579–1589.
Google Scholar
Heidug, W. and F. K. Lehner: Thermodynamics of coherent phase transitions in non hydrostatically stressed solids, Pure Appl. Geophys. 123 (1985), 91–98.
Google Scholar
Johnson, W. C. and J. I. D. Alexander: Interfacial conditions for thermodynamical equilibrium in two-phase crystals, J. Appl. Phys., 59 (1986), 2735–2746.
Google Scholar
Abeyaratne, R. and J. K. Knowles: On the driving traction acting on a surface of discontinuity in a continuum, J. Mech. Phys. Solids 38 (1990), 345–360.
Google Scholar
Abeyaratne, R. and J. K. Knowles: Kinetic relations and the propagation of phase boundaries in solids. Arch. Rational. Mech. Anal. 114 (1991), 119–154.
Google Scholar
Gurtin, M. and A. Struthers: Multiphase thermomechanics with interfacial structures, Arch. Rational Mech. Anal. 112 (1990), 97–160.
Google Scholar
Voorhees, P. W. and W. C. Johnson: The thermodynamics of coherent interface, J. Chem. Phys., 90 (1989), 2793–2801.
Google Scholar
Salzbrenner, R. J. and M. Cohen: On the thermodynamics of thermoelastic martensitic transformations, Acta Metall. 27 (1979), 739–748.
Google Scholar
Grujicic, M.: Kinetic of martensitic interface motion, Ph. D. Thesis at MIT, 1983.
Grujicic, M.; G. B. Olson and W. S. Owen: Mobility of martensitic interfaces, Metall. Trans. 16A (1985), 1713–1722. Mobility of the 203-1 martensitic interfaces: Part I: Experimental measurements. Metal. Trans. 16A (1985), 1723–1734. Part II: Model calculations, Metall. Trans. 16A (1985), 1735–1744.
Google Scholar
Olson, G. B. and M. Cohen: Dislocation theory of martensitic transformations. In: Dislocations in solids, N. Nabarro (ed.), North-Holland Publ. Amsterdam, 1986.
Google Scholar
Wollants, P.; M. De Bonte and J. R. Roos: A thermodynamic analysis of the stress-induced martensitic transformation in a single crystal, Z. Metallkunde. 70 (1979), 113–117.
Google Scholar
Cory, J. S. and J. L. McNichols, Jr. Nonequilibrium thermostatics, J. Appl. Phys. 58 (1985), 3282–3294.
Google Scholar
McNicols, Jr.; J. L. and J. S. Cory: Thermodynamics of Nitinol, J. Appl. Phys. 61 (1987), 972–984.
Google Scholar
Ortín, J. and A. Planes: Thermodynamics of thermoelastic martensitic transformations, Acta Metall. 37 (1989), 1873–1881.
Google Scholar
Ortín, J. and A. Planes: Thermodynamics of thermoelastic martensitic transformations, Acta Metall. 37 (1989), 1433–1441.
Google Scholar
Ortín, J. and A. Planes: Thermodynamics and hysteresis behaviour of thermoelastic transformations, J. de Phys. IV, Colloque C4, 13–23.
Müller, I. and H. Xu: On the pseudo-elastic hysteresis, Acta Metall., 39 (1991), 263–271.
Google Scholar
Fu, S.; I. Müller and H. Xu: The interior of the pseudoelastic hysteresis, Mat. Res. Soc. Symp. Proc. Vol. 246 (1992).
Fu, S.; Y.-Z. Huo and I. Müller: Thermodynamics of pseudoelasticity — an analytical approach, to appear in Acta Mechanica.
Bornert, M. and I. Müller: Temperature dependence of hysteresis in pseudo-elasticity, Proc. Conf. on Free Boundary Problems, Oberwolfach (1989).
Huo, Y.-Z. and I. Müller: Thermodynamics of pseudoelasticity—a graphical approach, to appear in Proc. Conf. on Model of Hysteresis, Trento (1991).
Landsberg, P. T.: Thermodynamics and statistical mechanics, Oxfort Uni. Press, Oxford, 1978.
Google Scholar
Fédélich, B. and G. Zanzotto: One-dimensional quasistatic non-isothermal evolution of shape-memory material inside the hysteresis loop, Cont. Mech. Thermodyn., 3 (1991), 251–276.
Google Scholar
Wollants, P.; de Bonte, M. and J. R. Roos: The Stress-Dependency of the Latent Heat of Transformation in β-Cu−Zn−Al Single Crystals, Z. f. Metallkunde 74 (1983).
Devonshire, A. F.: Theory of Ferroelectrics, Adv. Phys. 3 (1954).
Falk, F.: Ginzburg Landau theory and solitary waves in shape momory alloys, Z. Phys. B—Condensed Matter 54 (1984).
Müller, I.: Pseudoelasticity in shape memory alloys—an extreme case of thermoelasticity. Acc. Naz. dei Lincei Contributi Centro Linceo Interdisc. N 76 Rom (1986).
Achenbach, M. and I. Müller: Shape memory as a thermally activated process., Plasticity Today, Modelling, Methods and Applications, A. Sawczuk, G. Brandir (eds.) Elsevier Appl. Sci. Publ. London, New York (1985).
Google Scholar
Achenbach, M.: Simulation des Spannungs-Dehnungs-Temperaturverhaltens von Legierungen mit Form-Gedächtnis-Vermögen, Dissertation, TU Berlin, 1980.
Achenbach, M.: A Model for an Alloy with Shape Memory, Int. J. Plast. 5 (1989).
Wilmanski, K.: On pattern formation in stress-induced martensitic transformation, to appear in Non-linear thermodynamical processes in continua. G. Maugin, W. Muschik (ed.), (1993).
Wilmanski, K.: A model of stress-induced patterns in shape memory alloys, submitted to Acta Metall.