Soviet Atomic Energy

, Volume 60, Issue 5, pp 374–378 | Cite as

Effect of phosphorus and copper on the radiation embrittlement of low-alloy welds of variable composition

  • A. D. Amaev
  • A. A. Astaf'ev
  • G. S. Kark
  • A. M. Kryukov
  • S. I. Markov


Radiation Copper Phosphorus Variable Composition Radiation Embrittlement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    N. N. Alekseenko, A. D. Amaev, I. V. Gorynin, and V. A. Nikolaev, Radiation Damage of Steel Vessels of Water-Moderated Reactors [in Russian], Énergoizdat, Moscow (1981).Google Scholar
  2. 2.
    A. A. Astaf'ev, S. I. Markov, and G. S. Kark, “Statistical analysis of the combined effect of nickel, copper, and phosphorus on the radiation embrittlement of pearlitic steels,” At. Energ.,42, No. 3, 187–190 (1977).Google Scholar
  3. 3.
    J. Howthorne, E. Fortner, and S. Grant, “Radiation resistant experimental weld metals for advanced reactor vessel steels,” Weld. J. Res., Supp1.,49, 453–460 (1970).Google Scholar
  4. 4.
    V. A. Nikolaev and V. I. Badanin, “Effect of nickel, copper, and phosphorus on the radiation embrittlement of a ferritopearlitic steel,” At. Energ.,37, No. 6, 491–494 (1974).Google Scholar
  5. 5.
    N. N. Zorev, N. M. Novozhilov, A. A. Astaf'ev, et al., “Rapid method of materials development and investigation,” Fiz.-Khim. Obrab. Mater., No. 1 95–99 (1978).Google Scholar
  6. 6.
    N. P. Anosov, T. M. Krichevets, N. M. Novozhilov, et al., “Rapid evaluation of radiation stability of welds as a function of their chemical composition,” Avtomat. Svarka., No. 6, 62–63 (1982).Google Scholar
  7. 7.
    A. A. Astaf'ev and S. I. Markov, “Heat treatment of electroslag weldments,” Trudy Ts-NIITMASh, No. 177, 4–9 (1983).Google Scholar
  8. 8.
    S. I. Markov, “Prior heat treatment of structural steels,” ibid., 10–16 (1983).Google Scholar
  9. 9.
    G. S. Kark, A. A. Astaf'ev, and S. I. Markov, “Relationship between radiation embrittlement and temper embrittlement of a low-alloy steel,” Fiz. Met. Metalloved.,57, No. 3, 592–598 (1984).Google Scholar
  10. 10.
    G. S. Kark and A. A. Astaf'ev, “Temper embrittlement of low-alloy Cr−Ni−Mo steels,” Trudy TsNIITMASh, No. 177, 43–66 (1983).Google Scholar
  11. 11.
    E. Hondros and M. Seah, “Segregation to interfaces,” Int. Met. Rev., No. 12, 261–303 (1977).Google Scholar
  12. 12.
    S. Takayama, T. Ogura, S. Fu, and C. McMahon, “Calculation of transition temperature changes in steels,” Met. Trans.,11 A, No. 9, 1513–1530 (1980).Google Scholar
  13. 13.
    F. Smidt and J. Sprague, “Property changes resulting from impurity-defect interactions in iron and pressure vessel steel alloys,” ASTM STP, No. 529 (1973), pp. 78–91.Google Scholar

Copyright information

© Plenum Publishing Corporation 1986

Authors and Affiliations

  • A. D. Amaev
  • A. A. Astaf'ev
  • G. S. Kark
  • A. M. Kryukov
  • S. I. Markov

There are no affiliations available

Personalised recommendations