Soviet Atomic Energy

, Volume 60, Issue 5, pp 369–374 | Cite as

Analysis of the fast reactors' fuel-rod bundle flow resistance

  • A. V. Zhukov
  • A. P. Sorokin
  • P. A. Titov
  • P. A. Ushakov


Fast Reactor Flow Resistance Bundle Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    W. Sangster, “Calculation of rod bundle pressure loss,” ASME-68-WA/TH-35 (1968).Google Scholar
  2. 2.
    C. Chiu and N. Todreas, “Flow split measurements in a LMFBR radial blanket assembly,” Trans. ANS,26, No. 1, 455–456 (1977).Google Scholar
  3. 3.
    F. Engel, and R. Markley, and A. Bishop, “Laminar, transition and turbulent parallel flow pressure drop across wire-wrap spaced rod bundles,” Nucl. Sci. Eng.,69, No. 3, 290 (1979).Google Scholar
  4. 4.
    R. Markley and F. Engel, “LMFBR blanket assembly heat transfer and hydraulic test data evaluation,” in: Thermodynamics of FBR Fuel Subassemblies under Nominal and Nonnominal Operating Conditions: IWGFR/29, Vienna (1979), pp. 229–253.Google Scholar
  5. 5.
    A. Sarno, P. Gori, and G. Andalo, “Local pressure and velocity measurements in a water 19-rod bundle using a wire-wrap spacer system,” ibid. Thermodynamics of FBR Fuel Subassemblies under Nominal and Nonnominal Operating Conditions: IWGFR/29, Vienna (1979), pp. 219–228.Google Scholar
  6. 6.
    R. Roidt, M. Carelli, and R. Markley, “Experimental investigations of the hydraulic field in wire-wraped LMFBR core assemblies,” Nucl Eng. Des.,62, No. 1–3, 295–321 (1980).Google Scholar
  7. 7.
    K. Rehme, “Widerstandsbeiwerte von Gitterabstandshaltern fur Reactorbrennelementen,” Atomkernenergie,15, No. 2, 127–133 (1970).Google Scholar
  8. 8.
    K. Rehme, “Pressure drop correlations for fuel element spacers,” Nucl. Technol.,17, No. 1, 15–23 (1973).Google Scholar
  9. 9.
    E. Novendstern, “Pressure drop model for wire-wrapped fuel assemblies,” Trans. ANS,14, No. 2, 660–661 (1971).Google Scholar
  10. 10.
    E. Novendstern, “Turbulent flow pressure drop model for fuel rod assemblies utilizing a helical wire-wrap spacer system,” Nucl Eng. Des.,22, No. 1, 19–27 (1972).Google Scholar
  11. 11.
    A. Bishop and N. Todreas, “Hydraulic characteristics of wire-wrapped rod bundles,” Nucl. Eng. Des.,62, No. 1–3, 271–293 (1980).Google Scholar
  12. 12.
    V. I. Subbotin, M. K. Ibragimov, P. A. Ushakov, et al., Hydrodynamics and Heat Exchange in Atomic Power Plants (Elements of Design) [in Russian], Atomizdat, Moscow (1975). p. 109.Google Scholar
  13. 13.
    P. A. Ushakov, “Design of hydraulic characteristics for longitudinal flow in a regular array of fuel rods,” Teplofiz. Vys. Temp.,12, No. 1, 103–110 (1974).Google Scholar
  14. 14.
    K. Rehme, “Pressure drop performance of rod bundles in hexagonal arrangements,” Int. J. Heat Mass Trans.,15, No. 12, 2499–2517 (1972).Google Scholar
  15. 15.
    B. Tourneau, R. Grible, and J. Zerbe, “Pressure drop for parallel flow through rod bundle,” Trans. ASME,79, No. 8, 1751–1758 (1957).Google Scholar
  16. 16.
    L. Palmer and L. Swanson, “Measurements of heat transfer coefficients friction factor and velocity profiles for air flowing,” in: Development in Heat Transfer, N.Y.: ASME, 535–542 (1962).Google Scholar
  17. 17.
    L. Galloway and N. Epstein, “Longitudinal flow between cylinders in square and triangular arrays in a tube with square-edged entrance,” in: Chem. Eng. Symp. N.Y.: ASCE, No. 6, 3–15 (1965).Google Scholar
  18. 18.
    A. V. Sheinina, “Flow resistance of rod bundles in an axial flow,” in: Liquid Metals [in Russian], Atomizdat, Moscow (1967), pp. 210–233.Google Scholar
  19. 19.
    K. Presser, Wärmeübergang und Drukverlust an Reaktorbrennelementen in Form Ländsdurchströmter Rundstabbündel: Jul-486-RB, KFA, Jülich, 139 (1967).Google Scholar
  20. 20.
    W. Eifler and R. Nijsing, “Experimental investigation of velocity distribution and flow resistance in a triangular array of parallel rods,” Nucl Eng. Des.,5, No. 1, 22–42 (1967).Google Scholar
  21. 21.
    M. Rieger, “Experimentelle Untersuchung des Wärmeübergangs in Parallel Durchfrömten Rohrbündeln bei Konstanter Wärmestromdichte im Bereich Mittlerer Prandtl-Zahlen,” Int. J. Heat Mass Trans.,12, No. 11, 1421–1447 (1969).Google Scholar
  22. 22.
    Ya. Geina, Ya. Chervenka, and F. Mantlik, “Experimental investigation of hydraulic characteristics in the central part of a fuel assembly of a fast reactor,” in: Thermal Physics and Hydrodynamics of the Core and Steam Generators for Fast Reactors [in Czech], Vol. 1, Czech Atomic Energy Committee, Prague (1978), pp. 50–63.Google Scholar
  23. 23.
    H. Gräber, “Der Wärmeübergang in Glatten Rohreu, Zwischen Parallelen Platten, in Ringspalten und Langs Rohrenbündeln bei Exponentieller Wärmeflusskerteilung in Errwungener Laminarer oder Turbulenter Strömung,” Int. J. Heat Mass Trans.,13, No. 11, 1645–1703 (1970).Google Scholar
  24. 24.
    M. K. Ibragimov, I. A. Isupov, L. L. Kobzar', and V. I. Subbotin, “Calculation of the flow resistance factors for turbulent flow in noncircular channels,” At. Energ.,23, No. 4. 300–305 (1967).Google Scholar
  25. 25.
    A. V. Zhukov, E. Ya. Sviridenko, N. M. Matyukhin, and K. S. Rymkevich, “Investigation of hydrodynamics of a complicated flow in wire-wrap spaced fuel rod assemblies,” Preprint FÉI-867 [in Russian], Obninsk (1978), p. 16.Google Scholar

Copyright information

© Plenum Publishing Corporation 1986

Authors and Affiliations

  • A. V. Zhukov
  • A. P. Sorokin
  • P. A. Titov
  • P. A. Ushakov

There are no affiliations available

Personalised recommendations