Journal of Materials Science

, Volume 26, Issue 12, pp 3374–3379 | Cite as

Standard Gibbs' energies of formation of BaCuO2, Y2Cu2O5 and Y2BaCuO5

  • A. M. Azad
  • O. M. Sreedharan
  • K. T. Jacob
Papers

Abstract

The Gibbs' energies of formation of BaCuO2, Y2Cu2O5 and Y2BaCuO5 from component oxides have been measured using solid state galvanic cells incorporating CaF2 as the solid electrolyte under pure oxygen at a pressure of 1.01×105 Pa 〈BaO〉 + 〈CuO〉 → 〈BaCuO2〉 ΔGf,oxo(± 0.3) (kJ mol−1)=−63.4−0.0525T(K) 〈Y2O3〉 + 2〈CuO〉 → 〈Y2Cu2O2〉 ΔGf,oxo(± 0.3) (kJ mol−1)=18.47−0.0219T(K) 〈Y2O3〉 + 〈BaO〉 + 〈CuO〉 → 〈Y2BaCuO5〉 ΔGf,oxo(± 0.7) (kJ mol−1)=−72.5−0.0793T(K) Because the superconducting compound YBa2Cu3O7−δ coexists with any two of the phases CuO, BaCuO2 and Y2BaCuO5, the data on BaCuO2 and Y2BaCuO5 obtained in this study provide the basis for the evaluation of the Gibbs' energy of formation of the 1-2-3 compound at high temperatures.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. K. Wu, J. R. Ashburn, C. J. Torng, P. H. Hor, R. L. Meng, L. Gao, Z. J. Huang, Y. Q. Wang andC. W. Chu,Phys. Rev. Lett. 58 (1987) 908.CrossRefGoogle Scholar
  2. 2.
    G. M. Kale andK. T. Jacob,Solid State Ionics. 34 (1989) 247.CrossRefGoogle Scholar
  3. 3.
    Idem., Mater. Chem. 1 (1989) 515.CrossRefGoogle Scholar
  4. 4.
    R. Pankajavalli andO. M. Sreedharan,J. Mater. Sci. Lett. 7 (1988) 714.CrossRefGoogle Scholar
  5. 5.
    A. M. Azad andO. M. Sreedharan,ibid. 8 (1989) 67.CrossRefGoogle Scholar
  6. 6.
    R. Pankajavalli andO. M. Sreedharan,ibid. 8 (1989) 225.CrossRefGoogle Scholar
  7. 7.
    Idem., ibid. 8 (1989) 697.CrossRefGoogle Scholar
  8. 8.
    F. Toci, A. Schruenkamper, M. Cambini andL. Manes,Phys. C 153/155 (1988) 838.CrossRefGoogle Scholar
  9. 9.
    J. L. MacManus, D. J. Fray andJ. E. Evetts,Supercond. Sci. Technol. 1 (1989) 291.CrossRefGoogle Scholar
  10. 10.
    K. G. Frase, E. G. Liniger andD. A. Clarke,J. Amer. Ceram. Soc. 70 (1987) C 204.CrossRefGoogle Scholar
  11. 11.
    K. G. Frase andD. A. Clarke,Adv. Ceram. Mater. 2 (3B) (1987) 295 (special issue).Google Scholar
  12. 12.
    G. Wang, S.-J. Wu, S. N. Song, J. B. Ketterson, L. D. Marks, K. R. Poeppelmeier andT. D. Mason,ibid. 2 (3B) (1987) 313.Google Scholar
  13. 13.
    R. S. Roth, K. L. Davis andJ. R. Dennis,ibid. 2 (3B) (1987) 303.Google Scholar
  14. 14.
    D. M. De Leeuw, C. A. H. A. Mutsaers, C. Langeries, H. C. A. Smoorenburg andP. J. Rommers,Phys. C 152 (1988) 39.CrossRefGoogle Scholar
  15. 15.
    K. T. Jacob andY. Waseda, private communication.Google Scholar
  16. 16.
    Yu. D. Tretyakov, A. R. Kaul andN. V. Makukhin,J. Solid State Chem. 17 (1976) 183.CrossRefGoogle Scholar
  17. 17.
    A. M. Azad andO. M. Sreedharan,J. Appl. Electrochem. 17 (1987) 949.CrossRefGoogle Scholar
  18. 18.
    V. A. Levitskii,J. Solid State Chem. 25 (1978) 9.CrossRefGoogle Scholar
  19. 19.
    G. H. Rao, J. K. Liang andZ. Y. Qiao,J. Less-Common Metals 144 (1988) 215.CrossRefGoogle Scholar

Copyright information

© Chapman and Hall Ltd. 1991

Authors and Affiliations

  • A. M. Azad
    • 1
  • O. M. Sreedharan
    • 1
  • K. T. Jacob
    • 2
  1. 1.Metallurgy DivisionIndira Gandhi Centre for Atomic ResearchTamil NaduIndia
  2. 2.Department of MetallurgyIndian Institute of ScienceBangaloreIndia

Personalised recommendations