Soviet Atomic Energy

, Volume 66, Issue 3, pp 188–195 | Cite as

Use of Monte Carlo method in planning expensive experiments

  • V. M. Aleksandrov
  • S. B. Sanina


Thus, the numerical method proposed here for constructing the experiment plan is intended for the construction of a mathematical model of a technological process with the aim of “adjusting” it in optimal conditions. The distinctive feature of the method is the use of the information value parameter as the quality index of the experiment plan. The advantage of the method is the possibility of determining the optimal parameters of the technological process with a small number of experiments, which is especially important when the experiments are expensive.


Mathematical Model Optimal Condition Monte Carlo Method Optimal Parameter Technological Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    Ya. V. Shevelev, “Value of information in nuclear power,” At. Énerg.,57, No. 3, 147–153 (1984).Google Scholar
  2. 2.
    S. M. Ermakov and A. A. Zhiglyavskii, Mathematical Theory of Optimal Experiment [in Russian], Glavn. Redaktsiya Fiz.-Mat. Lit., Moscow (1987).Google Scholar
  3. 3.
    T. V. Anderson, Introduction to Multidimensional Statistical Analysis [Russian translation], Gos. Izd. Fiz.-Mat. Lit., Moscow (1963).Google Scholar
  4. 4.
    I. M. Sobol' and R. B. Statnikov, Choice of Optimal Parameters in Problems with Many Criteria [in Russian], Nauka, Moscow (1981).Google Scholar
  5. 5.
    V. M. Aleksandrov, A. M. Batkov, and P. P. Poreshin, “Statistical approach to the minimization of functions,” Izv. Akad. Nauk SSSR, Tekh. Kibern., No. 6 (1973).Google Scholar

Copyright information

© Plenum Publishing Corporation 1989

Authors and Affiliations

  • V. M. Aleksandrov
  • S. B. Sanina

There are no affiliations available

Personalised recommendations