Skip to main content
Log in

Similarities in properties, content, and relative rates of synthesis of fructose-P2 aldolase in livers of fed and starved rats

  • Published:
Bioscience Reports

Abstract

The present work gives evidence that, in contrast to the situation reported by Pontremoli et al. for the rabbit (Proc. Natl. Acad. Sci. U.S.A. 76, 6323–6325, 1979; Arch. Biochem. Biophys. 203, 390–394, 1980; Proc. Natl. Acad. Sci. U.S.A., 79, 5194–5196, 1992), starvation for as long as 3 days does not cause intracellular covalent modification and inactivation of fructose-P2 aldolase molecules in rat liver cells. This conclusion is based on our observations that liver aldolase molecules isolated from fed and starved rats in the presence of proteolytic inhibitors were not distinguished on the basis of specific catalytic activity, electrophoretic mobility, subunit molecular weight, NH2-terminat structure, or COOH-terminal structure. Further, the approximate 40% loss in rat liver mass which occurred during the 3-day fast was not associated with appreciable changes in the content of aldolase and most other abundant cytosolic proteinsper gram of rat liver, as judged by electrophoretic analysis of 100 000-g soluble fractions of liver extracts . Finally, a 3-day fast had no appreciable effect on therelative rates of synthesis of aldolase and most other abundant cytosolic proteins in rat liver. Our findings suggest that nutrient deprivation has no preferential effect on the concentration or metabolism of aldolase in rat liver cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adelman RC, Spolter PD & Weinhouse S (1966) J. Biol. Chem.241, 5467–5472.

    Google Scholar 

  • Baranowski T & Niederland TR (1949) J. Biol. Chem.180, 543–551.

    Google Scholar 

  • Bond JS (1980) Diabetes29, 648–654.

    Google Scholar 

  • Bond JS & Barrett AJ (1980) Biochem. J.189, 17–25.

    Google Scholar 

  • Currie RW & White FP (1981) Science214, 72–73.

    Google Scholar 

  • Dice JF & Walker CD (1978) in ‘Protein Turnover and Lysosome Function’ (Segal H & Doyle D, eds), pp 105–118, Academic Press, New York.

    Google Scholar 

  • Dice JF, Walker CD, Byrne B & Cardiel A (1978) Proc. Natl. Acad. Sci. U.S.A.75, 2093–2097.

    Google Scholar 

  • Dreschsler ER, Boyer PD & Kowalsky AG (1959) J. Biol. Chem.234, 2627–2634.

    Google Scholar 

  • Gockel SF & Lebherz HG (1981) J. Biol. Chem.256, 3877–2883.

    Google Scholar 

  • Goldberg AL & Dice JF (1974) Annu. Rev. Biochem.43, 835–869.

    Google Scholar 

  • Goldberg AL & St. John A (1976) Annu. Rev. Biochem.45, 747–803.

    Google Scholar 

  • Gracy RW, Lacko AG & Horecker BL (1969) J. Biol. Chem.244, 3913–3919.

    Google Scholar 

  • Hightower LE & White FP (1981) J. Cell. Physiol.108, 261–275.

    Google Scholar 

  • Hoagland VD Jr & Teller DC (1969) Biochemistry8, 594–602.

    Google Scholar 

  • Kawahara K & Tanford C (1966) Biochemistry5, 1578–1584.

    Google Scholar 

  • Laemmli UK (1970) Nature227, 680–685.

    Google Scholar 

  • Lebherz HG (1983) in ‘Isozymes: Current Topics in Biological and Medical Research’, A.R. Liss, New York, in press.

    Google Scholar 

  • Lebherz HG & Rutter WJ (1975) Methods Enzymol.42, part C, 249–258.

    Google Scholar 

  • Lebherz HG, Petell JK, Shackelford JE & Sardo MJ (1982) Arch. Biochem. Biophys.214, 642–656.

    Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL & Randall RJ (1951) J. Biol. Chem.193, 265–275.

    Google Scholar 

  • Nakai N, Wada K, Kobashi K & Hase J (1978) Biochem. Biophys. Res. Commun.83, 881–885.

    Google Scholar 

  • Ottaway JH & Mowbray J (1977) Curr. Top. Cell. Regul. 12, 107–208.

    Google Scholar 

  • Penhoet EE, Kochman M & Rutter WJ (1969) Biochemistry8, 4396–4402.

    Google Scholar 

  • Petell JK & Lebherz HG (1979a) J. Biol. Chem.254, 8179–8184.

    Google Scholar 

  • Petell JK & Lebherz HG (1979b) J. Biol. Chem.254, 7411–7417.

    Google Scholar 

  • Pontremoli S, Melloni E, Salamino F, Franzi AT, DeFlora A & Horecker BL (1973) Proc. Natl. Acad. Sci. U.S.A.70, 3674–3678.

    Google Scholar 

  • Pontremoli S, Melloni E, Salamino F, DeFlora A & Horecker BL (1974) Proc. Natl. Acad. Sci. U.S.A.71, 1776–1779.

    Google Scholar 

  • Pontremoli S, Melloni E, Salamino F, Sparatone B, Michetti M & Horecker BL (1979) Proc. Natl. Acad. Sci. U.S.A.76, 6323–6325.

    Google Scholar 

  • Pontremoli S, Melloni E, Salamino F, Sparatore B, Michetti M & Horecker BL (1980) Arch. Biochem. Biophys.203, 390–394.

    Google Scholar 

  • Pontremoli S, Melloni E, Michetti M, Salamino F, Sparatone B & Horecker BL (1982) Proc. Natl. Acad. Sci. U.S.A.79, 5194–5196.

    Google Scholar 

  • Samantego FC, Berry F & Dice JF (1981) Biochem. J.198, 149–157.

    Google Scholar 

  • Schimke RT & Doyle D (1970) Annu. Rev. Biochem.39, 929–976.

    Google Scholar 

  • Seery VL, Fischer EH & Teller DC (1967) Biochemistry6, 3315–3327.

    Google Scholar 

  • Shackelford JE & Lebherz HG (1981) J. Biol. Chem.256, 6423–6429.

    Google Scholar 

  • Susor WA, Penhoet E & Rutter WJ (1975) Methods Enzymol.41, 66–73.

    Google Scholar 

  • Tanford C, Kawahara K & Lapanje S (1967) J. Am. Chem. Soc.89, 729–736.

    Google Scholar 

  • Weiss TL, Zieske JD & Bernstein IA (1981) Biochim. Biophys. Acta661, 221–229.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lebherz, H.G., Petell, J.K. & Shackelford, J.E. Similarities in properties, content, and relative rates of synthesis of fructose-P2 aldolase in livers of fed and starved rats. Biosci Rep 3, 353–366 (1983). https://doi.org/10.1007/BF01122900

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01122900

Keywords

Navigation