Skip to main content
Log in

Contribution to the theory of non-self-maintaining volume discharges in molecular and noble gases

  • Published:
Journal of Soviet Laser Research Aims and scope

Abstract

Results are presented of investigations of non-self-maintaining volume (NV) gas discharges. The structure is investigated and the current-voltage characteristics are plotted of NV discharges in molecular gas. The characteristic times of the transient processes in the cathode layer of a nonstationary electron-beam-controlled (EBC) discharge are obtained. It is proposed to use an NV discharge as the nonlinear element of a relaxation-oscillation laser. Results are presented of computer experiments with such a laser. The influence of the hydrodynamic motion of the mixture on the characteristics of the cathode layer of an open-cycle cw EBC laser is investigated. It is shown that the ultraviolet emission of excimer molecules alters radically the structure of the cathode layer of an EBC discharge in a noble gas, viz., the intense photoeffect on the cathode leads to the appearance of a negative cathode potential drop. Self-maintaining photoionization and EBC discharges in a noble gas are considered; in these discharges the plasma density is maintained by impurity ionization or by electron-excitation of the atoms by emission from excimer molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  1. N. G. Basov, É. M. Belenov, A. F. Suchkov, and V. A. Danilychev, “Pulsed CO2 laser with high gas-mixture pressure,” Kvantovaya Elektron. (Moscow), No. 3, 121–122 (1971).

    Google Scholar 

  2. C. A. Fenstermacher, M. J. Nutter, J. P. Rink, and K. Boyer, “Electron-beam initiation of large-volume electrical discharge in CO2-laser media,” Bull. Am. Phys. Soc., Ser. II,16, No. 1, 42 (1971).

    Google Scholar 

  3. E. P. Velikov, I. V. Novobrantsev, V. D. Pis'mennyi, et al., “Concerning combined pumping of gas lasers,” Dokl. Akad. Nauk SSSR,205, No. 6, 1328–1331 (1972).

    Google Scholar 

  4. N. G. Basov, É. M. Belenov, V. A. Danilychev, and A. F. Suchkov, “Compressed carbon dioxide electron-beam controlled lasers,” Usp. Fiz. Nauk,114, No. 2, 213–247 (1974).

    Google Scholar 

  5. E. P. Velikhov, V. D. Pis'mennyi, and A. T. Rakhimov, “Non-self-maintaining gas-dis-charge exciting cw CO2 lasers,” Usp. Fiz. Nauk,122, No. 3, 419–448 (1977).

    Google Scholar 

  6. B. M. Koval'chuk, V. V. Kremnev, and G. A. Mesyats, “Avalanche discharge in a gas and generation of high-current nano- and subnanosecond pulses,” Dokl. Akad. Nauk SSSR,191, No. 1, 76–78 (1970).

    Google Scholar 

  7. V. A. Danilychev, O. M. Kerimov, and I. B. Kovsh, “Molecular high-pressure gas lasers,” Radiotekhnika, VINITI, Moscow, Vol. 12 (1977).

    Google Scholar 

  8. N. G. Basov, V. A. Danilychev, and I. B. Kovsh, “Present status of research into the electroionization method of excitation,” Tr. FIAN,116, 3–6 (1980).

    Google Scholar 

  9. V. M. Andriyakhin, E. P. Velikhov, V. V. Vasil'tsov, et al., “High-pressure gas laser preionized with a reactor,” Pis'ma Zh. Eksp. Theor. Fiz.,15, No. 11, 637–639 (1972).

    Google Scholar 

  10. L. P. Menakhin, E. K. Eroshenkov, I. O. Sibiryak, and K. N. Ul'yanov, “Glow discharge in nitrogen with gas ionization by an electron beam,” Zh. Tekh. Fiz.,46, No. 11, 2429–2432 (1976).

    Google Scholar 

  11. L. P. Menakhin, E. K. Eroshenkov, K. N. Ul'yanov, and L. P. Shanturin, “Non-self-maintaining glow discharge in nitrogen,” Zh. Tekh. Fiz.,45, No. 1, 148–151 (1975).

    Google Scholar 

  12. G. A. Bytyrbekov, V. A. Danilychev, I. B. Kovsh, et al., “Electron-beam controlled CO2 laser operating in the active zone of a stationary nuclear reactor,” Kvantovaya Elektron. (Moscow),4, No. 8, 1761–1764 (1977).

    Google Scholar 

  13. N. O. Blinov, I. A. Leont'ev, V. K. Orlov, and N. V. Cheburkin, “Electron-beam-controlled closed-cycle pulse-periodic CO2 laser,” Kvantovaya Elektron. (Moscow),4, No. 8, 1808–1809 (1977).

    Google Scholar 

  14. M. J. W. Boness and R. E. Center, “High-pressure pulsed electrical CO laser,” J. Appl. Phys.,48, No. 7, 2765–2771 (1977).

    Google Scholar 

  15. E. Hoag, H. Pease, J. Staal, and J. Zar, “Performance characteristics of a 10-kW industrial CO2 laser system,” J. Appl. Opt.,13, No. 8, 1959–1964 (1974).

    Google Scholar 

  16. N. G. Basov, I. K. Babaev, V. A. Danilychev, et al., “Electron-beam-controlled closed-cycle cw CO2 laser,” Kvantovaya Elektron. (Moscow),6, No. 4, 772–781 (1979).

    Google Scholar 

  17. A. V. Eletskii and B. M. Smirnov, “Single-pulse CO2 laser,” Dokl. Akad. Nauk SSSR,190, No. 4, 809–812 (1970).

    Google Scholar 

  18. J. J. Thomson and G. P. Thomson, Conduction of Electricity through Gases, Vol. 1, Cambridge Univ. Press, London (1928).

    Google Scholar 

  19. B. B. Rossi and H. H. Staub, Ionization Chambers and Counters, McGraw-Hill, New York (1949).

    Google Scholar 

  20. E. P. Blotov, V. A. Danilychev, and I. V. Kholin, “Adhesion and recombination in an electron-beam-excited discharge plasma,” Trudy FIAN116, 188–201 (1980).

    Google Scholar 

  21. V. V. Aleksandrov, V. N. Koterov, V. V. Pustovalov, et al., “Space-time evolution of cathode layer in electron-beam controlled lasers,” Kvantovaya Elektron. (Moscow),5, No. 1, 114–121 (1978).

    Google Scholar 

  22. E. R. Pugh, J. Wallace, J. H. Jacob, et al. “Optical quality of pulsed electron-beam-sustained lasers,” J. Appl. Opt.,13, No. 11, 2512–2527 (1974).

    Google Scholar 

  23. V. V. Aleksandrov, V. N. Koterov, and A. M. Soroka, “Asymptotic analysis of the structure of a non-self-maintaining volume gas discharge,” Zh. Vychisl. Mat. Mat. Fiz., No. 5, 1214–1229 (1978).

    Google Scholar 

  24. A. P. Averin, V. V. Aleksandrov, E. P. Glotov, et al., “Non-self-maintained discharges in nonelectronegative gases (theory and experiment),” Zh. Tekh. Fiz.,51, No. 6, 1172–1178 (1981).

    Google Scholar 

  25. V. V. Zakharov, A. A. Karpikov, and E. V. Chekhunov, “Gas discharge in nitrogen with stationary external ionization,” Zh. Tekh. Phys.,46, No. 9, 1846–1856 (1976).

    Google Scholar 

  26. S. A. Golubev, A. S. Kovalev, I. A. Loginov, et al., “Cathode potential drop in a stationary non-self-maintaining electron-beam-controlled discharge,” Fiz. Plazmy,3, No. 5, 1011–1016 (1977).

    Google Scholar 

  27. E. P. Velikhov, S. A. Golubev, Yu. K. Zemtsov, et al., “Non-self-maintaining stationary gas discharge in CO2∶N2 mixtures at atmospheric pressure with ionization by an electron beam,” Zh. Eksp. Teor. Fiz.,65, No. 2, 543–549 (1973).

    Google Scholar 

  28. V. V. Aleksandrov, V. A. Danilychev, V. N. Koterov, et al., “To the theory of electroionized discharge,” J. Phys.,40, No. 7, 7357–7358 (1979).

    Google Scholar 

  29. V. V. Aleksandrov, V. N. Koterov, V. V. Pustovalov, and A. M. Soroka, “Space-charge oscillations in the cathode layer of a non-self-maintaining gas discharge,” Dokl. Akad. Nauk SSSR,241, No. 5, 1050–1053 (1978).

    Google Scholar 

  30. V. V. Aleksandrov, E. P. Glotov, V. A. Danilychev, et al., “Relaxation oscillator using non-self-maintaining volume gas discharge (computer experiment),” Dokl. Akad. Nauk SSSR,258, No. 1, 63–68 (1981).

    Google Scholar 

  31. J. A. Mangano and J. H. Jacob, “Electron-beam-controlled discharge pumping of the KrF laser,” Appl. Phys. Lett.,27, No. 9, 495–497 (1975).

    Google Scholar 

  32. E. W. McDaniel, Collision Phenomena in Ionized Gases, Wiley, New York (1964).

    Google Scholar 

  33. A. D. McDonald, Microwave Breakdown in Gases, Wiley, New York (1966).

    Google Scholar 

  34. I. I. Sobel'man, Introduction to the Theory of Atomic Spectra, Pergamon Press, Oxford (1973).

    Google Scholar 

  35. Ya. B. Zel'dovich and Yu. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena, Academic Press, New York, (1966, 1967).

    Google Scholar 

  36. A. Engel and M. Steenbeck, Physics and Technology of Electric Discharge in Gases [Russian translation], IL, Moscow-Leningrad (1936).

    Google Scholar 

  37. S. C. Brown, Basic Data of Plasma Physics, MIT Press, Cambridge, Mass. (1959).

    Google Scholar 

  38. I. E. Tamm, Principles of Electricity Theory [in Russian], Nauka, Moscow (1976).

    Google Scholar 

  39. I. P. Shkarofsky, T. W. Johnston, and M. P. Bachynskii, The Particle Kinetics of Plasmas, Addison-Wesley, Reading, Pa. (1966).

    Google Scholar 

  40. L. B. Leob, Fundamental Processes of Electrical Discharges in Gases, Wiley, New York (1939).

    Google Scholar 

  41. E. P. Glotov, V. A. Danilychev, V. N. Koterov, and A. M. Soroka, “Effect of negative cathode potential drop of electron-beam-controlled discharge,” Pis'ma Zh. Tekh. Fiz.,5, No. 16, 972–975 (1979).

    Google Scholar 

  42. E. P. Glotov, V. A. Danilychev, A. I. Milanich, and A. M. Soroka, “Self-maintaining discharge with volume photoionization of impurities in noble gases,” Kvantovaya Elektron. (Moscow),6, No. 11, 2469–2471 (1979).

    Google Scholar 

  43. V. A. Danilychev, E. P. Glotov, A. I. Milanich, and A. M. Soroka, “The theory of a volume high-pressure discharge with photoionization of the electron-excited particles for pumping the lasers on electron transitions,” IEEE,QE-15, No. 2, 154–159 (1980).

    Google Scholar 

  44. V. A. Godyak and A. A. Kuzovnikov, “Rectifying properties of rf discharges,” Fiz. Plazmy,1, No. 3, 496–503 (1975).

    Google Scholar 

  45. E. V. Chekhunov, “Current-voltage characteristics of a discharge in an externally ionized gas,” Zh. Prikl. Mekh. Tekh. Fiz., No. 4, 16–19 (1979).

    Google Scholar 

  46. J. L. Neuringer, “Analysis of the cathode fall in high-voltage low-current gas discharges,” J. Appl. Phys.49, No. 2, 590–592 (1978).

    Google Scholar 

  47. H. Raether, Electron Valanches and Breakdown in Gases, Butterworths, London (1964).

    Google Scholar 

  48. A. J. Davies, C. J. Evans, and F. L. Jones, “Electrical breakdown of gases: the spatio-temporal growth of ionization field distorted by space charge,” Proc. R. Soc.,281A, No. 1385, 164–183 (1964).

    Google Scholar 

  49. Yu. P. Raizer, Fundamentals of Modern Physics of Gas-Discharge Processes [in Russian], Nauka, Moscow (1980).

    Google Scholar 

  50. A. P. Avrin, E. P. Glotov, V. A. Danilychev, et al., “Negative differential conductivity of an electron-beam-controlled discharge in nitrogen,” Pis'ma Zh. Tekh. Phys.,6, No. 9, 405–408 (1980).

    Google Scholar 

  51. S. V. Starodubtsev and A. M. Romanov, Passage of Active Particles Through Matter [in Russian], Izd. Akad. Nauk Uzb. SSR, Tashkent (1962).

    Google Scholar 

  52. R. C. Smith, “Computed secondary electron and electric field distribution in an electron-beam-controlled gas-discharge laser,” Appl. Phys. Lett.,21, No. 8, 352–355 (1972).

    Google Scholar 

  53. A. F. Vitshas and K. N. Ul'yanov, “Ionization instability of non-self-sustained discharge in molecular gases,” Zh. Tekh. Fiz.,46, No. 4, 896–899 (1976).

    Google Scholar 

  54. J. D. Cole, Perturbation Methods in Applied Mathematics, Xerox College (1968).

  55. N. N. Bogolyubov and N. N. Mitropol'skii, Asymptotic Methods in the Theory of Nonlinear Oscillations, Gordon and Breach, New York (1964).

    Google Scholar 

  56. N. V. Butenin, Yu. I. Neimark, and N. A. Fufaev, Introduction to the Theory of Nonlinear Oscillations [in Russian], Nauka, Moscow (1976).

    Google Scholar 

  57. S. G. Kalashnikov, Electricity [in Russian], Nauka, Moscow (1977).

    Google Scholar 

  58. A. F. Volkov and Sh. M. Kogan, “Physical phenomena in semiconductors with negative differential conductivity,” Usp. Fiz. Nauk,96, No. 4, 633–672 (1968).

    Google Scholar 

  59. G. B. Lopantseva, A. F. Pal', I. G. Persiantsev, et al., “Instability of non-self-maintaining discharge in mixtures of argon with molecular gases,” Fiz. Plazmy,5, No. 6, 1370–1379 (1979).

    Google Scholar 

  60. Shih-I Pai, Fluid Dynamics of Jets, Van Nostrand, New York (1954).

    Google Scholar 

  61. H. Schlichting, Boundary Layer Theory, McGraw-Hill, New York (1968).

    Google Scholar 

  62. L. I. Dobretsov and M. V. Gomoyunova, Emission Electronics [in Russian], Nauka, Moscow (1966).

    Google Scholar 

  63. F. Kacmarek, Introduction of Laser Physics [Russian translation], Mir, Moscow (1981).

    Google Scholar 

  64. B. L. Borovich, V. S. Zuev, V. A. Katulin, et al., “High-current emitting discharges and optically pumped gas lasers,” Radiotekhnika, Vol. 15, VINITI, Moscow (1978).

    Google Scholar 

  65. E. P. Glotov and I. I. Divnov, “Brightness of shock waves in argon in the vacuum-ultraviolet region,” Zh. Prikl. Mekh. Tekh. Fiz., No. 5, 132–136 (1975).

    Google Scholar 

  66. V. Yu. Baranov, V. M. Borisov, and Yu. Yu. Stepanov, “XeF laser with 2-nsec generation pulse and with divergence close to the diffraction limit,” Kvantovaya Elektron. (Moscow),8, No. 10, 2271–2274 (1981).

    Google Scholar 

  67. V. Hasson, C. M. Lee, R. Exberger, et al., “Gain and fluorescence measurements in photoionization-stabilized XeF discharge lasers operating at high-energy loadings,” Appl. Phys. Lett.,31, No. 3, 167–169 (1977).

    Google Scholar 

  68. A. T. Rakhimov and N. V. Suetin, “Effect of intrinsic radiation on the development of ionization instability of a non-self-maintaining discharge that excites excimer lasers,” Kvantovaya Elektron. (Moscow),6, No. 4, 859–863 (1979).

    Google Scholar 

  69. Yu. P. Raizer, Laser-Induced Discharge Phenomena, Plenum Publ., New York (1977).

    Google Scholar 

  70. S. Chandrasekhar, Radiative Transfer, Clarendon Press, Oxford (1950).

    Google Scholar 

  71. G. I. Marchuk, Theory and Methods for Nuclear Reactor Calculations, Plenum Publ. (1964).

  72. V. V. Aleksandrov, E. P. Glotov, V. A. Danilychev, et al., “Conditions for burning of a self-maintaining volume photoionization discharge,” Dokl. Akad. Nauk SSSR,224, No. 4, 840–843 (1979).

    Google Scholar 

  73. N. G. Basov, E. P. Glotov, A. I. Milanich, and A. M. Soroka, “Pumping of high-power gas lasers by a self-sustaining electrophotoionization discharge,” Pis'ma Zh. Tekh. Fiz.,5, No. 8, 449–453 (1979).

    Google Scholar 

  74. E. P. Glotov, V. A. Danilychev, A. I. Milanich, and A. M. Soroka, “Self-maintaining electrophotoionization discharge in ternary mixtures containing noble gases and halidecontaining molecules,” Kvantovaya Elektron. (Moscow),6, No. 9, 2000–2008 (1979).

    Google Scholar 

  75. L. A. Bessonov, Theoretical Foundations of Electrical Engineering [in Russian], Vysshaya Shkola, Moscow (1978).

    Google Scholar 

  76. N. G. Basov, L. A. Vasil'ev, V. N. Volkov, et al., “Electron-beam-controlled lasers based on inert-gas halides,” Izv. Akad. Nauk SSSR, Ser. Fiz.,43, No. 2, 240–245 (1979).

    Google Scholar 

Download references

Authors

Additional information

Translated from Trudy Ordena Lenina Fizicheskogo Instituta im. P. N. Lebedeva, Vol. 142, pp. 46–94, 1983.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aleksandrov, V.V., Glotov, E.P., Danilychev, V.A. et al. Contribution to the theory of non-self-maintaining volume discharges in molecular and noble gases. J Russ Laser Res 5, 603–646 (1984). https://doi.org/10.1007/BF01122720

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01122720

Keywords

Navigation