Skip to main content
Log in

Uncoupling and isotope effects in γ-butyrobetaine hydroxylation

  • Published:
Bioscience Reports

Abstract

Replacement of unlabeled γ-butyrobetaine with γ-[2,3,4-2H6]butyrobetaine has a profound effect on the stoichiometry between decarboxylation of 2-oxoglutarate and hydroxylation in the reaction catalyzed by human γ -butyrobetaine hydroxylase. The ratios between decarboxylation and hydroxylation are 1.16 with Unlabeled and 7.48 with deuterated γ-butyrobetaine as substrate. From these ratios an internal isotope effect of 41 has been calculated. DV in the overall reaction measured as 2- oxoglutarate decarboxylation is 2.5 and DV/K is 1.0. For γ-butyrobetaine hydroxylase fromPseudomonas sp. AK 1, 2-oxoglutarate decarboxylation exceeds hydroxylation with 10% when deuterated γ-butyrobetaine is used. No excess was found with unlabeled substrate and no internal isotope effect could be calculated. DV for the bacterial enzyme is 6.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lindstedt G & Lindstedt S (1970) J. Biol. Chem.245, 4187–4192.

    Google Scholar 

  2. Lindstedt G (1967) Biochemistry6, 1271–1282.

    Google Scholar 

  3. Englard S, Horwitz LJ & Tugenhaft Mills J. (1978) J. Lip. Res.19, 1057–1063.

    Google Scholar 

  4. Kondo A, Blanchard JS & Englard S (1981) Arch. Biochem. Biophys.212, 338–346.

    Google Scholar 

  5. Blanchard JS & Englard S (1983) Biochemistry22, 5922–5929.

    Google Scholar 

  6. Hutton JJ, Tappel AL & Udenfriend S (1966) Anal. Biochem.16, 384–394.

    Google Scholar 

  7. Risteli J, Tryggvason K & Kivirkko KI (1978) Anal. Biochem.84, 423–431.

    Google Scholar 

  8. Miller RL (1972) Anal. Biochem.45, 202–210.

    Google Scholar 

  9. Holme E (1982) Biochem. Biophys. Acta707, 259–266.

    Google Scholar 

  10. Holme E (1975) Biochemistry14, 4999–5003.

    Google Scholar 

  11. Myllylä R, Tuderman L & Kivirikko KI (1977) Eur. J. Biochem.80, 349–357.

    Google Scholar 

  12. Puistola U, Turpeenniemi-Hujanen TM, Myllylä R & Kivirikko KI (1980) Biochim. Biophys. Acta611, 40–50.

    Google Scholar 

  13. Hamilton GA (1971) Prog. Bioorg. Chem.1, 83–157.

    Google Scholar 

  14. Siegel B (1979) Prog. Bioorg. Chem.8, 219–226.

    Google Scholar 

  15. Jefford CW & Cadby PA (1981) Fortschr. Chem. Org. Naturprod.40, 191–265.

    Google Scholar 

  16. Holme E (1982) Dissertation, Gothenburg

  17. Hanauske-Abel HM & Günzler V (1982) J. Theor. Biol.94, 421–455.

    Google Scholar 

  18. Klinman JP (1978) Adv. Enzymol.46, 415–494.

    Google Scholar 

  19. Northrop DB (1981) Ann. Rev. Biochem.50, 103–131.

    Google Scholar 

  20. Abbott MT & Udenfriend S (1974) in: Molecular Mechanism of Oxygen Activation (Hayaishi O, ed) pp 167–214, Academic Press, New York.

    Google Scholar 

  21. Counts DF, Cardinale GJ & Udenfriend S (1978) Proc. Natl. Acad. Sci. USA75, 2145–2149.

    Google Scholar 

  22. Rao NV & Adams E (1978) J. Biol. Chem.253, 6327–6330.

    Google Scholar 

  23. Holme E, Lindstedt G & Lindstedt S (1979) Acta Chem. Scand.B33, 621–622.

    Google Scholar 

  24. Hsu C-A, Saewert MD, Polsinelli Jr LF & Abbot MT (1981) J. Biol. Chem.256, 6098–6101.

    Google Scholar 

  25. Holme E & Lindstedt S (1982) Biochim. Biophys. Acta704, 278–283.

    Google Scholar 

  26. Holme E, Lindstedt S & Nordin I (1982) Biochem. Biophys. Res. Commun.107, 518–524.

    Google Scholar 

  27. Lindstedt G, Lindstedt S, Midtvedt T & Tofft M (1967) Biochemistry6, 1262–1270.

    Google Scholar 

  28. Lindstedt G & Lindstedt S (1965) in: Recent Research on Carnitine (Wolf G, ed), pp 11–21, MIT Press, Mass.

    Google Scholar 

  29. Lindstedt G, Lindstedt S and Nordin I (1982) Scand. J. Clin. Lab. Invest.42, 477–485.

    Google Scholar 

  30. Lindstedt G, Lindstedt S & Nordin I (1977) Biochemistry16, 2181–2188.

    Google Scholar 

  31. Lindstedt G, Lindstedt S & Nordin I (1980) in: Carnitine Biosynthesis, Metabolism and Functions (Frenkel RA & McGarry JD, eds), pp 45–66, Academic Press, New York.

    Google Scholar 

  32. Lindstedt G, Lindstedt S & Tofft M (1970) Biochemistry9, 4336–4342.

    Google Scholar 

  33. McGarry JD & Foster DW (1976) J. Lip. Res.17, 277–281.

    Google Scholar 

  34. Cederblad G & Lindstedt S (1972) Clin. Chim. Acta37, 235–243.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holme, E., Lindstedt, S. & Nordin, I. Uncoupling and isotope effects in γ-butyrobetaine hydroxylation. Biosci Rep 4, 433–440 (1984). https://doi.org/10.1007/BF01122509

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01122509

Keywords

Navigation