Skip to main content
Log in

Phosphatidic acid regulates the activity of the channel-forming ionophores alamethicin, melittin, and nystatin: A1H-NMR study using phospholipid membranes

  • Published:
Bioscience Reports

Abstract

The regulation of ion channels by phosphatidic acid (a proposed active metabolite in the phosphatidylinositol effect) was investigated using1H-NMR spectroscopy and small unilamellar phospholipid vesicles. Transport across egg-yolk phosphatidylcholine (egg PC) and dipalmitoyl phosphatidylcholine (DPPC) vesicular membranes in the presence of the channel-forming ionophores alamethicin, melittin, and nystatin was monitored using the lanthanide probe ion Pr3+. In the absence of the ionophores, phosphatidic acid (PA) alone was found to have no ionophore properties, but in the presence of the ionophores the incorporation of 3 mol % phosphatidic acid in the bilayer markedly increased the rate of transport using melittin and nystatin, but decreased the rate using alamethicin, independent of the type of phosphatidylcholine used. The presence of PA in the bilayer also stimulated the production of lyric type channels, the extent of which were both ionophore- and lipid-dependent. These results are discussed in terms of possible molecular interactions between the PA, the individual ionophores, and type of lipid used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Berden JA, Barker RW & Radda GK (1975) Biochim. Biophys. Acta375, 186–208.

    Google Scholar 

  • Bergelson LD (1978) in: Methods in Membrane Biology (Korn E, ed), vol 9, pp 257–335.

  • Billah MM & Michell RH (1979) Biochem. J.182, 661–681.

    Google Scholar 

  • Boheim G & Kolb HA (1978) J. Membrane Biol.38, 99–150.

    Google Scholar 

  • Cass A, Finkelstein A & Krespi V (1970) J. Gen. Physiol.56, 100–124.

    Google Scholar 

  • Chauhan VPS, Ramsammy LS & Brockerhoff H (1984) submitted to Biochim. Biophys. Acta

  • Dawson RMC, Hemington NL & Irvine RF (1983) Biochem. Biophys. Res. Commun.117, 196–201.

    Google Scholar 

  • Degani H, Simon S & Mclaughlin AC (1981) Biochim. Biophys. Acta646, 320–328.

    Google Scholar 

  • Dufourcq J & Faucon J-F (1977) Biochim. Biophys. Acta467, 1–11

    Google Scholar 

  • Eisenberg M, Kleinberg ME & Shaper JH (1977) Ann. N.Y. Acad. Sci.303, 281–291.

    Google Scholar 

  • Fain JN & Berridge MJ (1979) Biochem. J.180, 665–681.

    Google Scholar 

  • Fox RO & Richards FM (1982) Nature300, 325–330.

    Google Scholar 

  • Georghiou S, Thompson M & Mukhopadhyay AK (1982) Biophys. J.37, 159–161.

    Google Scholar 

  • Hanke W, Methfessel C, Wilmsen H-U, Katz E, Jung G & Boheim G (1983) Biochim. Biophys. Acta727, 108–114.

    Google Scholar 

  • Holmes RP & Yoss NL (1983) Nature305, 637–638.

    Google Scholar 

  • Hunt GRA (1980) Chem. Phys. Lipids27, 353–364.

    Google Scholar 

  • Hunt GRA & Jawahalal K (1980) Biochim. Biophys. Acta601, 678–684.

    Google Scholar 

  • Hunt GRA & Jones IC (1982) Biosci. Rep.2, 921–928.

    Google Scholar 

  • Hunt GRA & Jones IC (1983) Biochim. Biophys. Acta736, 1–10.

    Google Scholar 

  • Hunt GRA & Tipping LRH (1978) Biochim. Biophys. Acta507, 242–261.

    Google Scholar 

  • Hunt GRA, Tipping LRH & Belmont MR (1978) Biophysical Chem.8, 341–355.

    Google Scholar 

  • Hutton WC, Yeagle PL & Martin RB (1977) Chem. Phys. Lipids19, 255–265.

    Google Scholar 

  • Michell RH & Kirk CJ (1981) Trends Pharmacol. Sci.2, 86–89.

    Google Scholar 

  • Nayar R, Schmid SL, Hope MJ & Cullis PR (1982) Biochim. Biophys. Acta688, 169–176.

    Google Scholar 

  • Nishizuka Y (1983) Phil. Trans. R. Soc. Lond.B202, 101–112.

    Google Scholar 

  • Pierce HD Jr, Unran AM & Oehlschlager AC (1978) Can. J. Biochem.56, 801–807.

    Google Scholar 

  • Putney JW, Weiss SJ, Van De Walle CM & Haddas RA (1980) Nature284, 345–347.

    Google Scholar 

  • Salmon DM & Honeyman TW (1980) Nature284, 344–345.

    Google Scholar 

  • Serhan CN, Anderson P, Goodman E, Dunham PB & Weissmann G (1981) J. Biol. Chem.256, 2736–2741.

    Google Scholar 

  • Serhan CN, Fridovich J, Goetzl EJ, Dunham PB & Weissmann G (1982) J. Biol. Chem.257, 4746–4752.

    Google Scholar 

  • Ting TZ, Hagan PS, Chan SI, Doll JD & Springer CS Jr (1981) Biophys. J.34, 189–216.

    Google Scholar 

  • Tosteson MT & Tosteson DC (1981) Biophys. J.36, 109–116.

    Google Scholar 

  • Tyson CA, Zande HV & Green DE (1976) J. Biol. Chem.251, 1326–1332.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hunt, G.R.A., Jones, I.C. & Veiro, J.A. Phosphatidic acid regulates the activity of the channel-forming ionophores alamethicin, melittin, and nystatin: A1H-NMR study using phospholipid membranes. Biosci Rep 4, 403–413 (1984). https://doi.org/10.1007/BF01122505

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01122505

Keywords

Navigation