Skip to main content
Log in

Comparison of the Hartree-Fock, Møller-Plesset, and Hartree-Fock-Slater method with respect to electrostatic properties of small molecules

Effects of electron correlation

  • Published:
Theoretica chimica acta Aims and scope Submit manuscript

Summary

The results of various quantum chemical calculations, the Hartree-Fock (HF) method, the Møller-Plesset perturbation theory (MP2), and the Hartree-Fock-Slater (HFS) method are compared. Atomic charges, dipole moments, topological properties of the electron density distribution and polarizabilities, and first hyperpolarizabilities are calculated. Atomic charges obtained with the HFS method are found to be very close to those calculated with the MP2 method, from which we conclude that the HFS method describes to some extent electron correlation effects. Performing an MP2 calculation after an HF calculation improves the molecular dipole moments considerably, yielding values close to the experimental ones. HFS calculations are computationally less demanding than MP2 and yield comparable results for the electron density distributions, dipole moments and polarizabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cook M, Karplus M (1987) J Phys Chem 91:31

    Google Scholar 

  2. Dreizler RM, Gross EKV (1990) Density functional theory. Springer-Verlag, Berlin

    Google Scholar 

  3. Hohenberg P, Kohn W (1964) Phys Rev B 136:864

    Google Scholar 

  4. Kohn W, Sham LJ (1965) Phys Rev 140:A1133

  5. Baerends EJ, Ellis DE, Ros P (1973) Chem Phys 2:41

    Google Scholar 

  6. Baerends EJ, Ros P (1973) Chem Phys 2:52

    Google Scholar 

  7. Ellis DE, Painter GS (1970) Phys Rev B 2:2887

    Google Scholar 

  8. Painter GS, Ellis DE (1970) Phys Rev B 1:4747

    Google Scholar 

  9. Boerrigter PM, te Velde G, Baerends EJ (1988) Int J Quant Chem 33:87

    Google Scholar 

  10. Löwdin PO (1959) Adv Chem Phys 2:207

    Google Scholar 

  11. Wilson S (1984) Electron correlation in molecules. Clarendon Press, Oxford

    Google Scholar 

  12. Wilson S (1987) Electron correlation in atoms and molecules. Plenum Press, NY

    Google Scholar 

  13. Feil D, Uiterwijk J (1988) Portgal Phys 19:397

    Google Scholar 

  14. Møller C, Plesset MS (1934) Phys Rev 46:618

    Google Scholar 

  15. Wang LC, Boyd RJ (1989) J Chem Phys 90:1083

    Google Scholar 

  16. Boyd RS, Wang LC (1989) J Comput Chem 10:376

    Google Scholar 

  17. Dupuis M, Spangler D, Wendoloski JJ (1980) NRCC Software Catalog, vol 1 Program N. QG01 (GAMESS); Guest MF, Kendrick J (1985) GAMESS Users Manual, Daresbury Lab

  18. Dupuis M, Spangler D, Wendoloski JJ (1980), NRCC Software Catalog, vol 1 Program N. QG01 (GAMESS); Schmidt MW, Baldridge KK, Boatz JA, Jensen JH, Koseki S, Gordon MS, Nguyen KA, Windus TL, Elbert ST (1990) QPCE Bulletin 10:52–54

  19. Hall GG (1985) Adv Atomic Mol Phys 20:41

    Google Scholar 

  20. Mulliken RS (1955) J Chem Phys 23:1833, 23:1841, 23:2338, 23:2343

    Google Scholar 

  21. Huzinaga S, Sakai Y, Miyoshi E, Narita S (1990) J Chem Phys 93:3319

    Google Scholar 

  22. Löwdin PO (1950) J Chem Phys 18:365

    Google Scholar 

  23. Hirshfeld FL (1977) Theor Chim Acta 44:129

    Google Scholar 

  24. Davidson ER, Chakravorty S (1992) Theor Chim Acta 83:319

    Google Scholar 

  25. Bader RFW (1990) Atoms in molecules — A quantum theory. Clarendon Press, Oxford

    Google Scholar 

  26. Bader RFW, Essén H (1984) J Chem Phys 80:1943

    Google Scholar 

  27. Biegler-König FW, Nguyen-Dang TT, Tal Y, Bader RFW, Duke AJ (1981) J Phys B 14:2739

    Google Scholar 

  28. Biegler-König FW, Bader RFW, Ting-Hua Tang (1982) J Comput Chem 3:317

    Google Scholar 

  29. Velders GJM, Gillet JM, Becker PJ, Feil D (1991) J Phys Chem 95:8601

    Google Scholar 

  30. Chemla DS, Zyss J (1987) (Eds). Nonlinear optical properties of organic molecules and crystals, Vol 1 and 2, Academic Press, NY

    Google Scholar 

  31. Szabo A, Ostlund NS (1989) Modern quantum chemistry. McGraw-Hill, NY

    Google Scholar 

  32. Cohen HD, Roothaan CCJ (1965) J Chem Phys 43:S34

    Google Scholar 

  33. Cohen HD (1965) J Chem Phys 43:3558

    Google Scholar 

  34. Caves TC, Karplus M (1969) J Chem Phys 50:3649

    Google Scholar 

  35. Nakatsuji H, Musher JI (1974) J Chem Phys 61:3737

    Google Scholar 

  36. Hariharan PC, Pople JA (1972) Chem Phys Lett 66:217

    Google Scholar 

  37. Binkley JS, Pople JA (1977) J Chem Phys 66:879

    Google Scholar 

  38. Francl MM, Pietro WJ, Hehre WJ, Binkley JS, Gordon MS, DeFrees DJ, Pople JA (1982) J Chem Phys 77:3654

    Google Scholar 

  39. Hehre WJ, Ditchfield R, Pople JA (1972) J Chem Phys 56:2257

    Google Scholar 

  40. Dunning TH, Hay PJ (1987) In: Schaefer III HF (ed) Methods of electronic structure theory, Chap 1, Plenum Press, NY

    Google Scholar 

  41. Feller D, Davidson ER (1990) In: Lipkowitz KB, Boyd DB (eds) Reviews in computational chemistry, Chap 1, VCH Publ, NY

    Google Scholar 

  42. Snijders JG, Baerends EJ, Vernooijs P (1981) At Data Nucl Data Tables 26:483

    Google Scholar 

  43. Cade PE, Huo WM (1967) J Chem Phys 47:614

    Google Scholar 

  44. McLean AD, Yoshimine M (1967) Tables of linear molecule wavefunctions. IBM, NY

    Google Scholar 

  45. Bicerano J, Marynick DS, Lipscomb WN (1978) J Am Chem Soc 100:732

    Google Scholar 

  46. Davidson ER, Feller D (1986) Chem Rev 86:681

    Google Scholar 

  47. Benedict WS, Gailar N, Plyler EK (1956) J Chem Phys 24:1139

    Google Scholar 

  48. Meyer H, Schweig A, Zittlau W (1982) Chem Phys Lett 92:637

    Google Scholar 

  49. Velders GJM, Feil D (1992) J Phys Chem 96:10725

    Google Scholar 

  50. Fabricant B, Krieger D, Muenter JS (1977) J Chem Phys 67:1576

    Google Scholar 

  51. Starck B (1967) In: Hellwege (ed) Landolt-Bornstein: Molecular constants from microwave spectroscopy, vol 4, Springer Verlag, Berlin

    Google Scholar 

  52. Dyke TR, Muenter JS (1973) J Chem Phys 59:3125

    Google Scholar 

  53. Kirchhoff WH, Lide DR (1967) Natl Stand Ref Data Ser Natl Bur Stand 10

  54. Clough SA, Beers Y, Klein GP, Rothman LS (1973) J Chem Phys 59:2254

    Google Scholar 

  55. Brown RD, Godfrey PD, Storey J (1975) J Mol Spectrosc 58:445

    Google Scholar 

  56. Krijn MPCM, Feil D (1986) J Chem Phys 85:319

    Google Scholar 

  57. Tanaka Y, Machida K (1977) J Mol Spectrosc 64:429

    Google Scholar 

  58. Raeymaekers P, Figeys HP, Geerlings P (1988) Mol Phys 65:945

    Google Scholar 

  59. Fowler PW (1982) Mol Phys 47:355

    Google Scholar 

  60. Timmermans J (1960) The physico-chemical constants of binary systems in concentrated solutions. Wiley Interscience, NY

    Google Scholar 

  61. Applequist J, Carl JR, Fung KK (1972) J Am Chem Soc 94:2952

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Velders, G.J.M., Feil, D. Comparison of the Hartree-Fock, Møller-Plesset, and Hartree-Fock-Slater method with respect to electrostatic properties of small molecules. Theoret. Chim. Acta 86, 391–416 (1993). https://doi.org/10.1007/BF01122431

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01122431

Key words

Navigation