Skip to main content
Log in

Ion transport in hypertension

Review

  • Published:
Bioscience Reports

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Aaronson P & Van Breemen C (1981) Effects of sodium gradient manipulation upon cellular calcium,45Ca fluxes and cellular sodium in the guinea pig taenia coli. J. Physiol.319, 443–461.

    Google Scholar 

  • Ambrosioni E, Costa FV, Montebugnoli L, Turtagni F & Magnani B (1981) Increased intralymphocytic sodium content in essential hypertension: an index of impaired Na+ cellular metabolism. Clinical Science61, 181–186.

    Google Scholar 

  • Araoye MA, Khatri IM, Yao LL & Freis ED (1978) Leukocyte intracellular cations in hypertension: effect of hypertensive drugs. Am. Heart J.96, 731–738.

    Google Scholar 

  • Beretta-Piccoli C, Davies DL, Boddy K, Brown JJ, Cumming AMM, East BW, Fraser R, Lever AF, Padfield PL, Semple PF, Robertson JIS, Weidmann P & Williams ED (1982) Relation of arterial pressure with body sodium, body potassium and plasma potassium in essential hypertension. Clin. Sci.63, 257–270.

    Google Scholar 

  • Berl T, Anderson RJ, McDonald KM & Schrier RW (1976) Clinical disorders of water metabolism. Kidney Internat.10, 117–132.

    Google Scholar 

  • Blaustein MP (1977) Sodium ions, calcium ions, blood pressure regulation, and hypertension: a reassessment and a hypothesis. Am. J. Physiol.232, C165-C173.

    Google Scholar 

  • Bolton TB (1979) Mechanisms of action of transmitters and other substances on smooth muscle. Physiol. Rev.59, 606–718.

    Google Scholar 

  • Bonaccorsi A, Hersmeyer K, Smith CB & Bohr DF (1977) Norepinephrine release in isolated arteries induced by K-free solution. Am. J. Physiol.232, H140-H145.

    Google Scholar 

  • Brading AF, Burnett M & Sneddon P (1980) The effect of sodium removal on the contractile responses of the guinea-pig taenia coli to carbachol. J. Physiol.306, 411–429.

    Google Scholar 

  • Buckley JT & Hawthorne JN (1972) Erythrocyte membrane polyphosphoinositide metabolism and the regulation of calcium binding. J. Biol. Chem.247, 7218–7223.

    Google Scholar 

  • Bulpitt CJ, Shipley MJ & Semmence A (1981) Blood pressure and plasma sodium and potassium. Clin. Sci.61, 85s-87s.

    Google Scholar 

  • Burck HCh (1971) Der Elektrolytgehalt der Erythrocyten im Rahmen der Diagnostik der Herzinsuffizienz. Verh. Dtsch. Ges. Inn. Med.77, 140–144.

    Google Scholar 

  • Canessa M, Adragna N, Solomon HS, Connolly TM & Tosteson DC (1980) Increased sodium-lithium contertransport in red cells of patients with essential hypertension. N. Engl. J. Med.302, 772–776.

    Google Scholar 

  • Canessa M, Bize I, Solomon H, Adragna N, Tosteson DC, Dagher G, Garay R & Meyer P (1981) Na countertransport and cotransport in human red cell function, dysfunction and genes in essential hypertension. Clin. Exp. Hypertension3, 783–795.

    Google Scholar 

  • Clegg G, Morgan DB & Davidson C (1982) The heterogeneity of essential hypertension: relation between lithium efflux and sodium content of erythrocytes and family history of hypertension. Lancetii, 891–894.

    Google Scholar 

  • Cole CH, Balfe JW & Welt LG (1968) Induction of a ouabain sensitive ATPase defect by uremic plasma. Trans. Assoc. Am. Physicians81, 213–220.

    Google Scholar 

  • Dahl LK, Knudsen KD & Iwai J (1969) Humoral transmission of hypertension: evidence from parabiosis. Circ. Res. i (suppl 24), 21–33.

    Google Scholar 

  • Davidson JS, Opie LH & Keding B (1982) Sodium-potassium cotransport activity as a genetic marker in essential hypertension. Brit. Med. J.284, 539–541.

    Google Scholar 

  • de Caldentey MI & Wheeler KP (1979) Requirement for negatively charged dispersions of phospholipids for interaction with lipid-depleted adenosine triphosphatase. Biochem. J.177, 265–273.

    Google Scholar 

  • De Luise M, Blackburn GL & Flier JS (1980) Reduced activity of the red-cell sodium-potassium pump in human obesity. N. Engl. J. Med.303, 1017–1022.

    Google Scholar 

  • de Mendonca M, Grichois ML, Garay RP, Sassard J, Ben-Ishay D & Meyer P (1980) Abnormal net Na+ and K+ fluxes in erythrocytes of three varieties of genetically hypertensive rats. Proc. Natl. Acad. Sci. U.S.A.77, 4283–4286.

    Google Scholar 

  • Devynck MA, Pernollet MG, Nunez AM & Meyer P (1981) Analysis of calcium handling in erythrocyte membranes of genetically hypertensive rats. Hypertension3, 397–403.

    Google Scholar 

  • de Wardener HE & MacGregor GA (1980) Dahl's hypothesis that a saluretic substance may be responsible for a sustained rise in arterial pressure: its possible role in essential hypertension. Kidney Internat.18, 1–9.

    Google Scholar 

  • de Wardener HE & MacGregor GA (1982) The natriuretic hormone and essential hypertension. Lanceti, 1450–1454.

    Google Scholar 

  • Droogmans G & Casteels R (1979) Sodium and calcium interactions in vascular smooth muscle cells of the rabbit ear artery. J. Gen. Physiol. 74, 57–70.

    Google Scholar 

  • Duffy MJ & Schwarz V (1973) Calcium binding by the erythrocyte membrane. Biochim. Biophys. Acta330, 294–301.

    Google Scholar 

  • Duggan R (1977) Calcium uptake and associated adenosine triphosphatase activity in fragmented sarcoplasmic reticulum. J. Biol. Chem.252, 1620–1627.

    Google Scholar 

  • Duhm J, Gobel BO, Lorenz R & Weber PC (1982) Sodium-lithium exchange and sodium-potassium cotransport in human erythrocytes. Hypertension4, 477–482.

    Google Scholar 

  • Edmondson RPS, Thomas RD, Hilton PJ, Patrick J & Jones NF (1975) Abnormal leucocyte composition and sodium transport in essential hypertension. Lanceti, 1003–1005.

    Google Scholar 

  • Fadeke Aderounmu A & Salako LA (1979) Abnormal cation composition and transport in erythrocytes from hypertensive patients. Eur. J. Clin. Invest.9, 369–375.

    Google Scholar 

  • Fitzgibbon WR, Morgan TO & Myers JB (1980) Erythrocyte22Na efflux and urinary sodium excretion in essential hypertension. Clin. Sci.59, suppl 6, 195s-197s.

    Google Scholar 

  • Fletcher PJ, Korner PI, Angus JA & Oliver JR (1976) Changes in cardiac output and total peripheral resistance during development of renal hypertension in the rabbit. Circ. Res.39, 633–639.

    Google Scholar 

  • Folkow B, Hallback M, Lundgren Y, Sivertsson R & Weiss L (1973) Importance of adaptive changes in vascular design for establishment of primary hypertension studied in man and in spontaneously hypertensive rats. Circ. Res.32, suppl 1, 2–16.

    Google Scholar 

  • Forstner J & Manery JF (1971) Calcium binding by human erythrocyte membranes. Biochem. J.124, 563–571.

    Google Scholar 

  • Friedman SM (1979) Evidence for enhanced sodium transport in the tail artery of the spontaneously hypertensive rat. Hypertension1, 572–582.

    Google Scholar 

  • Friedman SM & Friedman CL (1976) Cell permeability, sodium transport and the hypertensive process in the rat. Circ. Res.39, 433–441.

    Google Scholar 

  • Friedman SM & Nakashima M (1978) Evidence for enhanced Na transport in hypertension induced by DOCA in the rat. Canad. J. Physiol. Pharmacol.56, 1029.

    Google Scholar 

  • Friedman SM, Nakashima M, McIndoe RA & Friedman CL (1976) Increased erythrocyte permeability to Li and Na in spontaneously hypertensive rats. Experientia32, 476.

    Google Scholar 

  • Friedman SM, Nakashima M & McIndoe RA (1977) Glass electrode measurements of net Na+ and K+ fluxes in erythrocytes of the spontaneously hypertensive rat. Canad. J. Physiol. Pharmacol.55, 1302–1310.

    Google Scholar 

  • Friedman SM, McIndoe RA & Spiekerman G (1982) Ion-selective electrode studies of cell Na components in vascular smooth muscle of WKY and SHR. Am. J. Physiol.242, H751-H759.

    Google Scholar 

  • Garay RP, Elghozi JL, Dagher G & Meyer P (1980) Laboratory distinction between essential and secondary hypertension by measurement of erythrocyte cation fluxes. N. Engl. J. Med.302, 769–771.

    Google Scholar 

  • Garwitz ET & Jones AW (1982) Aldosterone infusion in the rat and dose-dependent changes in blood pressure and arterial ionic transport. Hypertension4, 374–381.

    Google Scholar 

  • Grim CE, Luft FC, Miller JZ, Brown PL, Gannon MA & Weinberger MH (1979) Effects of sodium loading and depletion in normotensive first-degree relatives of essential hypertensives. J. Lab. Clin. Med.94, 764–771.

    Google Scholar 

  • Guyton AC, Coleman TG, Bower JD & Granger HJ (1970) Circulatory control in hypertension. Circ. Res.26, suppl II, 135–147.

    Google Scholar 

  • Guyton AC, Coleman TG, Cowley AW, Sheel KW Manning RD & Norman RA (1974) Arterial pressure regulation, inHypertension Manual (Laragh JH ed), pp 111–134, Yorke Medical Books, New York.

    Google Scholar 

  • Haddy F, Pamnani M & Clough D (1978) The sodium-potassium pump in volume expanded hypertension. Clin. Exper. Hypertension1, 295–336.

    Google Scholar 

  • Heagerty AM, Milner M, Bing RF, Thurston H & Swales JD (1982) Leucocyte membrane sodium transport in normotensive populations: dissociation of abnormalities of sodium efflux from raised blood pressure. Lancetii, 894–896.

    Google Scholar 

  • Heistad DD, Abboud FM & Ballard DR (1971) Relationship between plasma sodium concentration and vascular reactivity in man. J. Clin. Invest.50, 2022–2032.

    Google Scholar 

  • Hermsmeyer K (1976) Electrogenesis of increased norepinephrine sensitivity of arterial vascular muscle in hypertension. Circ. Res.38, 362–367.

    Google Scholar 

  • Holloway ET & Bohr DF (1973) Reactivity of vascular smooth muscle in hypertensive rats. Circ. Res.33, 678–685.

    Google Scholar 

  • Jones AW (1974) Altered ion transport in large and small arteries from spontaneously hypertensive rats and the influence of calcium. Circ. Res.34, suppl 1, 117–122.

    Google Scholar 

  • Jones AW (1981) Kinetics of active, sodium transport in aortas from control and deoxycorticosterone hypertensive rats. Hypertension3, 631–640.

    Google Scholar 

  • Jones AW & Hart RG (1975) Altered ion transport in aortic smooth muscle during deoxycorticosterone acetate hypertension in the rat. Circ. Res.37, 333–341.

    Google Scholar 

  • Jones RB, Patrick J & Hilton PJ (1981) Increased sodium content and altered sodium transport in thymocytes of spontaneously hypertensive rats. Clin Sci.61, 313–316.

    Google Scholar 

  • Jorgensen PL (1975) Isolation and characterization of the components of the sodium pump. Quart. Rev. Biophys.7, 234–274.

    Google Scholar 

  • Kimelberg HK & Papahadjopoulos D (1972) Phospholipid requirements for Na, K-ATPase: Herd group specificity and fatty and fluidity. Biochim. Biophys. Acta282, 277–292.

    Google Scholar 

  • Long C & Mouat B (1971) The binding of calcium ions by erythrocytes and ‘ghost’ cell membranes. Biochem. J.123, 829–836.

    Google Scholar 

  • Losse, H Wehmeyer H & Wessels F (1960) Wasser- und Elektrolytgehalt von Erythrozyten bei arterieller Hypertonie. Klinische Wochenschrift38, 393–395.

    Google Scholar 

  • Luft FC, Weinberger MH & Grim CE (1982) Sodium sensitivity and resistance in normotensive humans. Am. J. Med.72, 726–736.

    Google Scholar 

  • Ma TS & Bose D (1977) Sodium in smooth muscle relaxation. Am. J. Physiol.232, C59-C66.

    Google Scholar 

  • MacGregor GA, Fenton, S, Alaghband-Zadeh, J, Markandu N, Roulston JE & de Wardener H (1981) Evidence for a raised concentration of a circulating sodium transport inhibitor in essential hypertension. Brit. Med. J.283, 1355–1357.

    Google Scholar 

  • Marks ES, Bing RF, Thurston H, Russell GI & Swales JD (1982) Responsiveness to pressor agents in experimental renovascular and steroid hypertension. Hypertension4, 238–244.

    Google Scholar 

  • Mendlowitz M (1973) Vascular reactivity in systemic arterial hypertension. Am. Heart J.85, 252–259.

    Google Scholar 

  • Meyer P, Garay RP, Nazaret C, Dagher G, Bellet M, Broyer M & Feingold J (1981) Inheritance of normal erythrocyte cation transport in essential hypertension. Brit. Med. J.282, 1114–1117.

    Google Scholar 

  • Michell RH (1975) Inositol phospholipids and cell surface receptor function. Biochim. Biophys. Acta415, 81–147.

    Google Scholar 

  • Omvik P, Tarazi RC & Bravo EL (1980) Regulation of sodium balance in hypertension. Hypertension2, 515–523.

    Google Scholar 

  • Orlov SN & Postnov YuV (1982) Ca++ binding and membrane fluidity in essential and renal hypertension. Clin. Sci.63, 281–284.

    Google Scholar 

  • Orlov SN, Gulak PV, Litvinov IS, Postnov YuV (1982) Evidence of altered structure of the erythrocyte membrane in spontaneously hypertensive rats. Clin. Sci.63, 43–45.

    Google Scholar 

  • Overbeck HW, Pamnani MB & Ku DD (1980) Arterial wall ‘waterlogging’, accompanying chronic digoxin treatment in dogs. Proc. Soc. Exper. Biol. Med.164, 401–404.

    Google Scholar 

  • Overbeck HW, Ku DD & Rapp JP (1981) Sodium pump activity in arteries of Dahl salt-sensitive rats. Hypertension3, 306–312.

    Google Scholar 

  • Palaty V (1980) The transient contractile response of the isolated rat tail artery to inhibition of the sodium pump. Can. J. Physiol. Pharmacol.58, 336–339.

    Google Scholar 

  • Pamnani MB, Clough DL, Huot SJ & Haddy FJ (1980) Vascular sodium-potassium pump activity in various models of experimental hypertension. Clin. Sci.59, suppl 6, 179s-181s.

    Google Scholar 

  • Pamnani MB, Buggy J, Huot SJ & Haddy FJ (1981) Studies, on the role of ahumoral sodium-transport inhibitor and the anterohypertension. Clin. Sci.61, suppl. 7, 57s-60s.

    Google Scholar 

  • Pickering GW (1968)High Blood Pressure. Churchill-Livingstone, Edinburgh.

    Google Scholar 

  • Postnov YuV & Orlov SN (1980) Evidence of altered calcium accumulation and calcium binding by the membranes of adipocytes in spontaneously hypertensive rats. Pflugers Arch.385, 85–89.

    Google Scholar 

  • Postnov YuV, Orlov S, Gulak P & Shevchenko A (1976) Altered permeability of the erythrocyte membrane for sodium and potassium ions in spontaneously hypertensive rats. Pflugers Arch.365, 257–263.

    Google Scholar 

  • Postnov YuV, Orlov, S, Shevchenko A & Adler A (1977) Altered sodium permeability, calcium binding and Na+, K+-ATPase activity in the red blood cell membrane in essential hypertension. Pflugers Arch.371, 263–269.

    Google Scholar 

  • Postnov YuV, Orlov SN & Pokudin NI (1979) Decrease of calcium binding by the red blood cell membrane in spontaneously hypertensive rats and in essential hypertension. Pflugers Arch.379, 191–195.

    Google Scholar 

  • Postnov YuV, Orlov SN & Pokudin NI (1980) Alteration of intracellular calcium distribution in the adipose tissue of human patients with essential hypertension. Pflugers Arch.388, 89–91.

    Google Scholar 

  • Postnov YuV, Orlov SN & Pokudin NI (1981) Alteration of the intracellular calcium pool of adipose tissue in spontaneously hypertensive rats. Pflugers Arch.390, 256–259.

    Google Scholar 

  • Poston L, Sewell RB, Wilkinson SP, Richardson PJ, Williams R, Clarkson EM, MacGregor GA & de Wardener HE (1981) Evidence for a circulating sodium transport inhibitor in essential hypertension. Brit. Med. J.282, 847–849.

    Google Scholar 

  • Roelofson B & van Deenen LLM (1973) Lipid requirement of membrane-bound ATPase: studies in human erythrocyte ghosts. Eur. J. Biochem.40, 245–257.

    Google Scholar 

  • Romero PJ (1976) Role of membrane-bound Ca in ghost permeability to Na and K. J. Membrane Biol.24, 329–343.

    Google Scholar 

  • Romero PJ & Whittam R (1971) The control by internal calcium of membrane permeability of sodium and potassium. J. Physiol.214, 481–507.

    Google Scholar 

  • Rothstein A (1968) Membrane phenomena. Ann. Rev. Physiol.30, 15–22.

    Google Scholar 

  • Seymour AA, Davis JO, Freeman RH, DeForrest JM, Rowe PB, Stephens GA & Williams GM (1980) Hypertension produced by sodium depletion and unilateral nephrectomy: a new experimental model. Hypertension2, 125–129.

    Google Scholar 

  • Skou JC (1975) The (Na+ K+-activated enzyme system and its relationship to transport of sodium and potassium. Quart. Rev. Biophys.7, 401–436.

    Google Scholar 

  • Swales JD (1975)Sodium Metabolism in Disease. Lloyd-Luke Ltd., London, pp 50–51.

    Google Scholar 

  • Swales JD (1977) On the inappropriate in hypertension research. Lancetii, 702–704.

    Google Scholar 

  • Swales JD (1979) Renin-angiotensin system in hypertension. Pharmac. Ther.7, 173–201.

    Google Scholar 

  • Swarts HGP, Bonting SL, DePont JJHHM, Schuurmans-Stekhoven FMAH, Thien TA & Van't Laar A (1981) Cation fluxes and (Na+K+)-activated ATPase activity in erythrocytes of patients with essential hypertension. Clin. Exper. Hypertension3, 831–849.

    Google Scholar 

  • Thomas RD, Edmondson RPS, Hilton PJ & Jones NF (1975) Abnormal hypertension and the effect of treatment. Clin. Sci. Mol. Med.48, 169s-170s.

    Google Scholar 

  • Tosteson DC & Hoffman JF (1960) Regulation of cell volume by active cation transport in high and low potassium sheep red cells. J. Gen. Physiol.44, 169–194.

    Google Scholar 

  • Tosteson DC, Adragna N, Bize I, Solomon H & Canessa M (1981) Membranes, ions and hypertension. Clin. Sci.61, suppl 7, 5s-10s.

    Google Scholar 

  • Van Breemen C, Aaronson P & Loutzenhiser R (1979) Sodium-calcium interactions in mammalian smooth muscle. Pharmacol. Rev.30, 167–208.

    Google Scholar 

  • Walter U & Distler A (1982) Abnormal sodium efflux in erythrocytes of patients with essential hypertension. Hypertension4, 205–210.

    Google Scholar 

  • Webb RC & Bohr DF (1979) Potassium relaxation of vascular smooth muscle from spontaneously hypertensive rats. Blood Vessels16, 71–79.

    Google Scholar 

  • Wei JW, Janis RA & Daniel EE (1976) Calcium accumulation and enzymatic activities of subcellular fractions from aortas and ventricles of genetically hypertensive rats. Circ. Res.39, 133–140.

    Google Scholar 

  • Wessels F, Junge-Hulsing G & Losse M (1967) Untersuchungen zur Natriumpermeabilität der Erythrozyten bei Hypertonikern und Normotonikern mit familiärer Hochdruckbelastung. Z. Kreislaufforschg.56, 374–380.

    Google Scholar 

  • Wheeler KP & Whittam R (1970) The involvement of phosphatidylserine in adenosine triphosphatase activity of the sodium pump. J. Physiol.207, 303–328.

    Google Scholar 

  • Whittam R (1968) Control of membrane permeability to potassium in red blood cells. Nature219, 610.

    Google Scholar 

  • Wiggins RC, Basar I & Slater JDH (1978) Effect of arterial pressure and inheritance on the sodium excretory capacity of normal young men. Clin. Sci. Mol. Med.54, 639–647.

    Google Scholar 

  • Woods KL, Beevers DG & West MJ (1981) Racial differences in red cell cation transport and their relationship to essential hypertension. Clin. Exper. Hypertension3, 655–662.

    Google Scholar 

  • Yamori Y, Nara Y, Horie R & Ohtaka M (1977) Ion permeability of erythrocyte membrane in SHR. Jap. Heart J.18, 604–605.

    Google Scholar 

  • Zsoter TT, Wolchinsky C, Henein NF & Ho LC (1977) Calcium kinetics in the aorta of spontaneously hypertensive rats. Cardiovasc. Res.11, 353–357.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Swales, J.D. Ion transport in hypertension. Biosci Rep 2, 967–990 (1982). https://doi.org/10.1007/BF01122165

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01122165

Keywords

Navigation