Skip to main content
Log in

The unwinding of circular DNA by intercalating agents as determined by gel electrophoresis

  • Published:
Bioscience Reports

Abstract

The conventional counting of electrophoretically resolvable topoisomers is an attractive technique for determining the number of superhelical turns in a closed circular DNA molecule. The method can be extended in order to determine the unwinding produced by a drug, if its binding constants are known under similar environmental conditions. Ethidium bromide was found to unwind a DNA molecule derived from the plasmid pBR322 by 26.0° in a magnesium-containing buffer. The method is convenient for investigating the possible effects of different environmental changes (such as ionic strength, ionic species, or temperature) on the unwinding angle produced by a particular drug. It can also give an early indication of multiple modes of binding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lerman LS (1961) J. Mol. Biol.3, 18–30.

    PubMed  Google Scholar 

  2. Keller W (1975) Proc. Natl. Acad. Sci. U.S.A.72, 4876–4880.

    PubMed  Google Scholar 

  3. Dougherty G (1982) Comments Mol. Cell Biophys.1, 337–354.

    Google Scholar 

  4. Anderson P & Bauer W (1978) Biochemistry17, 594–601.

    PubMed  Google Scholar 

  5. Gellert M, Mizuuchi K, O'Dea MH & Nash HA (1976) Proc. Natl. Acad. Sci. U.S.A.73, 3872–3876.

    PubMed  Google Scholar 

  6. Sugino A, Peebles CL, Kreuzer KN & Cozzarelli NR (1977) Proc. Natl. Acad. Sci. U.S.A.74, 4767–4771.

    PubMed  Google Scholar 

  7. Liu LF & Wang JC (1978) Cell15, 979–984.

    PubMed  Google Scholar 

  8. Wang JC, Jacobsen JH & Saucier J-M & (1977) Nucl. Acids Res.4, 1225–1241.

    PubMed  Google Scholar 

  9. Germond JE, Hirt B, Oudet P, Gross-Bellard M & Chambon P (1975) Proc. Natl. Acad. Sci. U.S.A.72, 1843–1847.

    PubMed  Google Scholar 

  10. Germond JE, Rouviere-Yaniv J, Yaniv M & Brutlag D (1979) Proc. Natl. Acad. Sci. U.S.A.76, 3779–3783.

    PubMed  Google Scholar 

  11. Shure M & Vinograd J (1976) Cell8, 215–226.

    PubMed  Google Scholar 

  12. Wang JC (1971) J. Mol. Biol.55, 523–533.

    PubMed  Google Scholar 

  13. Champoux JJ & Dulbecco R (1972) Proc. Natl. Acad. Sci. U.S.A.69, 143–146.

    PubMed  Google Scholar 

  14. Marcia S, Flashner MC, Katopes MA & Lebowitz J (1977) Nucl. Acids Res.4, 1713–1726.

    PubMed  Google Scholar 

  15. Stettler UH, Weber H, Koller TH & Weissman CH (1979) J. Mol. Biol.131, 21–40.

    PubMed  Google Scholar 

  16. Dougherty G & Koller Th (1982) Nucl. Acids Res.10, 525–538.

    PubMed  Google Scholar 

  17. Bresloff JL & Crothers DM (1975) J. Mol. Biol.95, 103–123.

    PubMed  Google Scholar 

  18. Dougherty G & Pigram WJ (1982) CRC Critical Reviews in Biochemistry12, 103–132.

    PubMed  Google Scholar 

  19. Dougherty G & Waring MJ (1982) Biophys. Chem.15, 27–40.

    PubMed  Google Scholar 

  20. Dougherty G (1982) Int. J. Biochem.14, 493–504.

    PubMed  Google Scholar 

  21. Dougherty G (1981) Anal. Biochem.115, 52–57.

    PubMed  Google Scholar 

  22. McGhee JD & von Hippel PH (1974) J. Mol. Biol.86, 469–489.

    PubMed  Google Scholar 

  23. Shure M, Pulleyblank EE & Vinograd J (1977) Nucl. Acids Res.4, 1183–1205.

    PubMed  Google Scholar 

  24. Dougherty G (1982) Aust. J. Exp. Biol. and Med. Sci.60, 675–686.

    Google Scholar 

  25. Wang JC (1979) Proc. Natl. Acad. Sci. U.S.A.76, 200–203.

    PubMed  Google Scholar 

  26. Rhodes D & Klug A (1980) Nature286, 573–578.

    PubMed  Google Scholar 

  27. Wang JC (1974) J. Mol. Biol.89, 783–801.

    PubMed  Google Scholar 

  28. Tsai CC, Jain SC & Sobell HM (1975) Proc. Natl. Acad. Sci. U.S.A.72, 628–632.

    PubMed  Google Scholar 

  29. Wakelin LPG, Romanos M, Chen TK, Glaubiger D, Canellakis ES & Waring MJ (1978) Biochemistry17, 5057–5063.

    PubMed  Google Scholar 

  30. Gaugain B, Barbet J, Capelle N, Roques BP & Le Pec JB (1978) Biochemistry17, 5078–5088.

    PubMed  Google Scholar 

  31. Fox KR, Harrison NL & Waring MJ (1981) FEBS Lett.133, 305–310.

    PubMed  Google Scholar 

  32. Lee JS & Morgan AR (1978) Nucl. Acids Res.5, 2425–2439.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dougherty, G. The unwinding of circular DNA by intercalating agents as determined by gel electrophoresis. Biosci Rep 3, 453–460 (1983). https://doi.org/10.1007/BF01121956

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01121956

Keywords

Navigation