Skip to main content
Log in

Methods of estimating the angular and energy characteristics of generated laser emission

  • Published:
Journal of Soviet Laser Research Aims and scope

Abstract

The physical models used to estimate the angular and energy characteristics of laser emission generated in the kinetic and coherent regime of emission interaction with an active medium are critically analyzed and systematized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  1. L. A. Vasil'ev, V. K. Demkin, Yu. A. Kalinin, and Yu. I. Kruzhilin, “Calculation of the angular distribution of laser emission from an inhomogeneous active medium and a telescopic cavity,” Kvantovaya Elektron. (Moscow),2, No. 1, 51–56 (1975).

    Google Scholar 

  2. Yu. S. Vagin, V. K. Konyukhov, and A. N. Logunov, “Energy characteristics of CO2 gasdynamic laser having a symmetric cylindrical telescopic cavity with additional feedback,” Preprint No. 53, FIAN, Moscow (1981).

    Google Scholar 

  3. A. G. Fox and T. Li, “Resonant modes in a maser interferometer,” Bell Syst. Techn. J.,40, 453–488 (1961).

    Google Scholar 

  4. A. G. Fox and T. Li, “Modes in a maser interferometer with curved and tilted mirrors,” Proc. IEEE,51, 80–89 (1963).

    Google Scholar 

  5. A. G. Fox and T. Li, “Effect of gain saturation in the oscillating modes of optical masers,” IEEE J. Quant. Electr.,QE-2, No. 12, 774–783 (1966).

    Google Scholar 

  6. D. B. Rensch, “Three-dimensional unstable resonator calculation with laser medium,” Appl. Opt.,13, No. 11, 2546–2561 (1974).

    Google Scholar 

  7. A. E. Siegman and E. A. Sziklas, “Mode calculations in unstable resonators with flowing saturable gain. 1. Hermite-Gaussian expansion,” Appl. Opt.,13, No. 12, 2775–2792 (1974).

    Google Scholar 

  8. E. A. Sziklas and A. E. Siegman, “Mode calculations in unstable resonators with flowing saturable gain. 2. Fast Fourier transform method,” Appl. Opt.,14, No. 8, 1874–1889 (1975).

    Google Scholar 

  9. A. F. Suchkov, “Influence of inhomogeneities on the operating regimes of solid-state lasers,” Zh. Éksp. Teor. Fiz.,49, No. 5(11), 1495–1503 (1965).

    Google Scholar 

  10. A. F. Suchkov, “Electrodynamics of optical lasers with inhomogeneous media,” Trudy FIAN,43, 161–168 (1968).

    Google Scholar 

  11. V. S. Letokhov and A. F. Suchkov, “Dynamics of laser with instantaneous Q-switching,” Trudy FIAN,43, 169–186 (1968).

    Google Scholar 

  12. B. P. Kirsanov and A. M. Leontovich, “WKB calculations for laser cavities with active media,” Trudy FIAN,98, 141–161 (1977).

    Google Scholar 

  13. B. R. Suidam, “Self-focusing of very powerful laser beams, II,” IEEE J. Quant. Electr.,QE-10, No. 11, 837–843 (1974).

    Google Scholar 

  14. A. S. Biryukov, E. M. Kudryavtsev, A. N. Logunov, and V. A. Shcheglov, “Spectra of spatial emission frequencies in a planar cavity filled with a homogeneous active medium,” FIAN Preprint, No. 129, Moscow (1989).

  15. A. S. Biryukov, E. M. Kudryavtsev, A. N. Logunov, and V. A. Shcheglov, “Contribution to the theory of open parabolic-mirror optical cavities filled with a medium that is inhomogeneous in the transverse direction,” FIAN Preprint No. 161, Moscow (1989).

  16. E. Wolf, “Spatial coherence of resonant modes in a maser interferometer,” Phys. Lett.,3, No. 4, 166–168 (1963).

    Google Scholar 

  17. W. Streifer, “Spatial coherence, in periodic systems,” JOSA,56, No. 11, 1481–1489 (1966).

    Google Scholar 

  18. F. Gori, “Propagation of the mutual intensity through a periodic structure,” Atti Fond. Giorgio Ronchi,35, No. 4, 434–447 (1980).

    Google Scholar 

  19. G. A. Pasmanik, “Self-action of incoherent-light beams,” Zh. Éksp. Teor. Fiz.,66, No. 2, 490–500 (1974).

    Google Scholar 

  20. S. W. McDonald, “Phase-space representations of wave equations with applications to the eikonal approximation for short-wavelength waves,” Phys. Rep.,158, No. 6, 337–416 (1988).

    Google Scholar 

  21. M. B. Vinogradov, O. V. Rudenko, and A. P. Sukhorukov, Wave Theory [in Russian], Nauka, Moscow (1979), p. 34.

    Google Scholar 

  22. H. Kogelnik, “Coupled wave theory for thick hologram gratings,”. Bell Syst. Techn. J.,48, No. 9, 2909 (1969).

    Google Scholar 

  23. H. Kogelnik and C. V. Shank, “Coupled-wave theory of distributed feedback lasers,” J. Appl. Phys.,43, No. 5, 2327–2335 (1972).

    Google Scholar 

  24. E. Wigner, “On the quantum correction for thermodynamic equilibrium,” Phys. Rev.,40, No. 5, 749–759 (1932).

    Google Scholar 

  25. M. J. Bastiaans, “The Wigner distribution function of partially coherent light,” Opt. Acta,28, No. 9, 1215–1224 (1981).

    Google Scholar 

  26. A. T. Friberg, “Energy transport in optical systems with partially coherent light,” Appl. Opt.,25, No. 24, 4547–4556 (1986).

    Google Scholar 

  27. Yu. A. Bychkov and A. M. Dykhne, “Electron spectrum in a one-dimensional system with randomly placed scattering centers,” Pis'ma Zh. Eksp. Teor. Fiz.,3, No. 6, 313–316 (1966).

    Google Scholar 

  28. M. Lax and J. C. Phillips, “One-dimensional impurity bands” Phys. Rev.,110, No. 1, 41–49 (1958).

    Google Scholar 

  29. H. L. Frisch and S. P. Lloyd, “Electron levels in a one-dimensional random lattice,” Phus. Rev.,120, No. 4, 1175–1189 (1960).

    Google Scholar 

  30. S. Flügge, Practical Quantum Mechanics, Springer, Berlin (1971).

    Google Scholar 

  31. L. Allen and J. H. Eberly, Optical Resonance and Two-Level Atoms, Wiley, New York (1975).

    Google Scholar 

  32. R. Shoemaker, “Coherent infrared spectroscopy of nonstationary processes,” in: Laser and Coherence Spectroscopy, J. I. Steinfeld (ed.), Plenum, New York (1978).

    Google Scholar 

  33. S. M. Rytov, Introduction to Statistical Physics [in Russian], Nauka, Moscow (1966), pp. 187–191.

    Google Scholar 

  34. W. H. Carter and E. Wolf, “Correlation theory of wave fields generated by fluctuating, three-dimensional, primary, scalar sources. Part I. General theory, Opt. Acta,28, No. 2, 227–233 (1981); “Part II. Radiation from isotropic model sources,”28, No. 2, 245–259 (1981).

    Google Scholar 

  35. E. Wolf and W. H. Carter, “Coherence and radiant intensity in scalar wave fields generated by fluctuating, primary, planar sources,” JOSA,68, No. 7, 953–964 (1978).

    Google Scholar 

  36. W. H. Carter and W. Wolf, “Coherence and radiometry with quasihomogeneous planar sources,” JOSA,67, 785–796 (1977).

    Google Scholar 

  37. A. Starikov and E. Wolf, “Coherent-mode representation of Gaussian shell-model sources and of their radiation fields,” JOSA,72, No. 7, 923–928 (1982).

    Google Scholar 

  38. E. Wolf and W. H. Carter, “Angular distribution of radiant intensity from sources of different degrees of spatial coherence,” Opt. Commun.,13, No. 3, 205–209 (1975).

    Google Scholar 

  39. H. J. Pain, Physics of Vibrations and Waves, Wiley, New York (1979).

    Google Scholar 

  40. R. b. Kostanyan and P. S. Pogosyan, “Effect of coherence on amplification of light,” Radiotekh. Elektron.,14, No. 4, 730–733 (1969).

    Google Scholar 

  41. A. S. Biryukov, E. M. Kudryavtsev, and A. N. Logunov, “Theoretical investigations of the onset of stimulated scattering in CO2 lasers, FIAN Preprint No. 16, Moscow (1987).

  42. R. C. Bourret, “Stochasticall perturbed fields with applications to wave propagation in random media,” Nuovo Cimento,26, No. 1, 1–31 (1962).

    Google Scholar 

  43. R. C. Bourret, “Friction theory of dynamical systems with noisy parameters,” Can. J. Phys.,43, No. 4, 619–639 (1965).

    Google Scholar 

  44. E. M. Kudryavtsev, A. N. Logunov, and V. A. Shcheglov, “Factors influencing the angular power spectrum of emission generated in a planar cavity with optically inhomogeneous active medium,” FIAN Preprint No. 165, Moscow (1989).

  45. A. S. Biryukov, E. M. Kudryavtsev, A. N. Logunov, and V. A. Shcheglov, “Influence of the emission statistics in a cavity with a two-level active medium on the lasing power,” FIAN Preprint No. 200, Moscow (1989).

  46. A. N. Logunov and V. A. Shcheglov, “Effective method of describing the statistics of the emission field in a cavity with random transversely inhomogeneous medium,” Trudy FIAN (1990) (in press).

Download references

Authors

Additional information

Quantum Radiophysics and Optics Division, Lebedev Physics Institute. Translated from Preprint No. 176 of the Lebedev Physics Institute, Academy of Sciences of the USSR, Moscow, 1989.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Biryukov, A.S., Kudryavtsev, E.M., Logunov, A.N. et al. Methods of estimating the angular and energy characteristics of generated laser emission. J Russ Laser Res 11, 129–144 (1990). https://doi.org/10.1007/BF01120903

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01120903

Keywords

Navigation