Skip to main content
Log in

Kinetics of transition through lasing threshold

  • Published:
Journal of Soviet Laser Research Aims and scope

Abstract

The paper is devoted to an investigation of laser-radiation statistics. The dynamics of establishment of an equilibrium photon distribution in frequency is analyzed and the results are compared with numerical experiments. The spectral density of the radiation-intensity fluctuations is obtained in analytic form in the quasiclassical laser theory. An equation that generalizes the earlier calculations is obtained for the lasing linewidth in the framework of the Scully-Lamb theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  1. W. Horsthemke and R. Lefevre, Noise-Induced Transitions [Russian translation], Mir, Moscow (1987).

    Google Scholar 

  2. H. Risken, The Fokker-Planck Equation, Springer-Verlag, Berlin-Heidelberg-New York-Tokyo (1984).

    Google Scholar 

  3. D. R. Bates, A. S. Kingston, and R. W. P. McWirter, “Recombination between electrons and atomic ions,” Proc. R. Soc.,A267, 297–312 (1962).

    Google Scholar 

  4. B. F. Gordiets, A. I. Osipov, and L. A. Shelepin, Kinetic Processes in Gases and Molecular Lasers [In Russian], Nauka, Moscow (1980).

    Google Scholar 

  5. S. A. Reshetnyak, S. M. Kharchev, and L. A. Shelepin, “Asymptotic methods in the theory of kinetic equations,” Trudy FIAN,144, 3–36 (1984).

    Google Scholar 

  6. S. A. Reshetnyak and S. M. Kharchev, “Metastable distributions of the order parameter for the description of the dynamics of second-phase transitions,” FIAN Preprint No. 273 Moscow (1985).

  7. H. A. Kramers, “Brownian motion in a field of force and the diffusion model of chemical reactions,” Physica (The Hague),7, 284–304 (1940).

    Google Scholar 

  8. E. M. Lifshitz and L. P. Pitaevskii, Physical Kinetics, Pergamon, Oxford (1984).

    Google Scholar 

  9. A. Z. Patashinskii and B. O. Shumilo, “Theory of relaxation of metastable states,” Zh. Éksp. Teor. Fiz.,77, 1417–1431 (1979).

    Google Scholar 

  10. V. P. Silin and A. A. Rukhadze, Electromagnetic Properties of Plasma and of Plasmalike Media [in Russian], Gosatomizdat, Moscow (1961).

    Google Scholar 

  11. M. Sargent, M. O. Scully, W. E. Lamb, Laser Physics, London (1974).

  12. E. E. Nikitin, Theory of Elementary Atomic-Molecular Processes in Gases [in Russian], Khimiya, Moscow (1970).

    Google Scholar 

  13. S. A. Reshetnyak, “Rates of biomolecular reactions in the theory of Brownian motion,” FIAN Preprint No. 250, Moscow (1987).

  14. G. Parisi and Y., Wu, “Perturbation theory without gauge fixing,” Sci. Sin.,24 483–497 (1981).

    Google Scholar 

  15. A. S. Goncharov and A. D. Linde, “Tunneling in an expanding Universe; Euclidean and Haniltonian approaches,” Fiz. Elem. Chastits At. Yad.,17, No. 5, 837–883 (1987).

    Google Scholar 

  16. E. Witten, “Dynamical breaking of supersymmetry,” Nucl. Phys.,B188, No. 3, 513–554 (1981).

    Google Scholar 

  17. M. V. Feigel'man and A. M. Tsvelik, “Hidden supersymmetry of stochastic dissipative dynamics,” Zh. Éksp. Teor. Fiz.,83, No. 4, 1430–1443 (1982).

    Google Scholar 

  18. L. M. Biberman, V. S. Vorob'ev, and I. T. Yakubov, Kinetics of Nonequilibrium Low-Tem-perature Plasma, Consultants Bureau, New York (1987).

    Google Scholar 

  19. H. Dekker and N. G. van Kampen, “The expansion of the Fokker-Planck equation including a critical point,” Phys. Lett.,76A, No. 2, 101–105 (1980).

    Google Scholar 

  20. J. M. Sancho, M. San Miguel, S. L. Katz, and J. D. Gunton, “Analytical and numerical studies of multiplicative noise,” Phys. Rev.,A26, No. 3, 1589–1609 (1982).

    Google Scholar 

  21. H. Dekker, “Critical dynamics. The expansion of master equation including a critical point. 1. Diffusion processes,” Physica,103A, No. 1/2, 55–79 (1980).

    Google Scholar 

  22. S. A. Lomov, Introduction to the General Theory of Singular Perturbations [in Russian], Nauka, Moscow (1981).

    Google Scholar 

  23. W. Bez and P. Talkner, “A new variational method to calculate escape rates in bistable system,” Phys. Lett.,82A, No. 7, 313–316 (1981).

    Google Scholar 

  24. H. Brand, A. Schenzle, and G. Schroder, “Lower and upper bounds for the eigenvalues of the Fokker-Planck equation in detailed balance,” Phys. Rev.,A25, No. 4, 2324–2338. (1982).

    Google Scholar 

  25. V. Seshadri, B. J. West, and K. Lindenberg, “Analytical theory of extrema,” J. Chem. Phys.,72, No. 2, 1145–1150 (1980).

    Google Scholar 

  26. L. Pontryagin, A. Andronov, and W. Vitt, “Statistical analysis fo dynamic systems,” Zh. Éksp. Teor. Fiz.,3, No. 4, 165–180 (1933).

    Google Scholar 

  27. M. Suzuki, “Instability, fluctuations and critical slowing down,” Lect. Notes Phys.,132, 48–75 (1980).

    Google Scholar 

  28. W. M. Zheng, “Decay of unstable states: examination of scaling theory,” Physica,122A, No. 3, 431–440 (1983).

    Google Scholar 

  29. H. Hu, “Unified solution of the Fokker-Planck equation with a bistable potential,” Phys. Lett.,116A, No. 8, 361–364 (1980).

    Google Scholar 

  30. N. N. Bogolyubov, “Problems of a dynamical theory in statistical physics,” in: Studies in Statistical Mechanics, J. E. de Boer and G. E. Uhlenbek (eds.), Vol. 1, Wiley, N. Y. (1981).

    Google Scholar 

  31. S. A. Reshetyak and L. A. Shelepin, “Method of quasiequilibrium functions in physical kinetics,” Trudy FIAN,106, 90–118 (1979).

    Google Scholar 

  32. I. MacDonalds, Symmetric Functions and Hall Polynomials [Russian translation], Mir, Moscow (1985).

    Google Scholar 

  33. H. Dekker and N. G. van Kampen, “Eigenvalues of a diffusion process with a critical point,” Phys. Lett.,73A, No. 5/6, 374–376 (1979).

    Google Scholar 

  34. W. E. Lamb, “Theory of an optical maser,” Phys. Rev.,134, A1429-A1450 (1964).

    Google Scholar 

  35. F. Arechhi, M. Scully, H. Haken, and D. Weindlich, Quantum Fluctuations of Laser Radiation [Russian translation], Mir, Moscow (1974).

    Google Scholar 

  36. H. Risken, “Distribution and correlation functions for a laser amplitude,” Z. Phys.,186, No. 1, 85–98 (1965).

    Google Scholar 

  37. H. Risken and H. D. Vollmer, “The influence of higher order contributions to the correlation function of the intensity fluctuations in a laser threshold,” Z. Phys.,201, No. 3, 323–330 (1967).

    Google Scholar 

  38. F. T. Arecchi, G. S. Rodari, and A. Sona, “Statistics of the laser radiation at threshold,” Phys. Lett.,25A, No. 1, 59–60 (1967).

    Google Scholar 

  39. D. Meltzer, L. Mandel, “Dynamics of a Q-switched laser near threshold,” Phys. Rev.,A3, No. 4, 1763–1772 (1971).

    Google Scholar 

  40. F. T. Arecchi, M. Giglio, and A. Sona, “A dynamics of the laser radiation at threshold,” Phys. Lett.,25A, No. 4, 5341–5342 (1967).

    Google Scholar 

  41. L. D. Landau and I. M. Khalatnikov, “Anomalous absorption of sound near second-order phase-transition poitns,” Dokl. Akad. Nauk SSSR,96, 469–472 (1954).

    Google Scholar 

  42. Yu. L. Klimontovich, Kinetic Theory of Electromagnetic Processes [in Russian], Nauka, Moscow (1980).

    Google Scholar 

  43. L. D. Landau and E. M. Lifshitz, Statistical Physica, Pergamon, Oxford (1980).

    Google Scholar 

  44. N. N. Bogolyubov, Selected Works [in Russian], Vol. 3, Naukova Dumka, Kiev (1971). pp. 174–243.

    Google Scholar 

Download references

Authors

Additional information

Optics Division, Lebedev Physics Institute. Translated from Preprint No. 79, Lebedev Physics Institute, Academy of Sciences of the USSR, Moscow, 1990.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reshetnyak, S.A., Kharchev, S.M. Kinetics of transition through lasing threshold. J Russ Laser Res 11, 466–497 (1990). https://doi.org/10.1007/BF01120735

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01120735

Keywords

Navigation