Skip to main content
Log in

Use of photoprocesses with charge transfer to excite active laser media

  • Published:
Journal of Soviet Laser Research Aims and scope

Conclusions

A survey of various methods of optical excitation of ionic states, including excimer states, of molecules demonstrates the extensive potential optical pumping and makes it possible to determine the trends that are promising for further searches. Noticeable among them, firstly, is direct optical excitation and its accompanying secondary chemical processes with phototransport of electrons, which offer the researchers the largest choice of specific molecules and excitation mechanisms. We have shown, with molecular chlorine as the example, that the search for working media for optical pumping need not be limited to heavy molecules. The use of a complicated isotopic composition of molecules, Zeeman splitting of levels in a magnetic field, and impact broadening of spectral lines makes it possible to extend, within reasonable limits, the method of wide-band pumping to include also light molecules. As to secondary exchange reactions with charge transfer, in which optically excited molecules participate, it can be seen from the results of estimates of the cross sections that they constitute the largest class of excimerformation reactions and are characterized by additional possibilities of spectrally controlling the course of the reactions for the purpose of obtaining various products.

Other promising methods considered here are production of ionic photodissociation states, including polar photodissociation, and also chemical radiative collisions.

Note particularly the need for continuing the search for polyatomic excimers. It is obvious that production of such excimers is possible in media having a more complicated molecular composition, where such an advantage of optical pumping as the absence of induced absorption at the lasing wavelength is most strongly manifested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  1. Excimer Lasers, Ch. K. Rhodes (ed.), with contributions by Ch. A. Brau, A. Gallagher, P. W. Hoff, et al., Springer (1979).

  2. I. S. Lacoba and L. I. Shelepin, “Laser-active molecules with excited ion therm (possible search directions),” FIAN Preprint No. 57, Moscow (1980).

  3. V. S. Zuev, L. D. Mikheev, and I. V. Pogorel'skii, Trudy FIAN,125, 104 (1980).

    Google Scholar 

  4. G. Herzberg, Molecular Spectra and Molecular Structure, Vol. 1. Spectra of Diatomic Molecules, Van Nostrand, N.Y. (1939).

  5. J. C. McLennan and R. Turnbull, Proc. R. Soc.,A139, 683 (1933).

    Google Scholar 

  6. P. G. Wilkinson, Can. J. Phys.,46, No. 4, 315 (1968).

    Google Scholar 

  7. D. E. Freeman, K. Joshino, and G. Tanaka, J. Chem. Phys.,67, 3462 (1977).

    Google Scholar 

  8. R. E. Drullinger, M. M. Hessel, and E. W. Smith, J. Chem. Phys.,66, 5656 (1977).

    Google Scholar 

  9. E. V. Nikiforov, L. I. Plimak, Yu. B. Pretechenskii, and D. Scherba, Opt. Spektrosk.,41, 339 (1976).

    Google Scholar 

  10. J. E. Kielkopf and R. A. Miller, J. Chem. Phys.,61, 3304 (1974).

    Google Scholar 

  11. R. J. Exton and W. L. Snow, JQSRT,20, No. 1, 1 (1978).

    Google Scholar 

  12. R. J. Exton, W. L. Snow, and M. E. Hillard, JQSRT,20, 235 (1978).

    Google Scholar 

  13. L.I. Gudzenko, L. V. Gurvich, V. S. Dubov, and S. I. Yakovlenko, Zh. Éksp. Teor. Fiz.,73, 2067 (1977).

    Google Scholar 

  14. H. P. Grieneisen, Xue-Jing Hu, K. L. Kompa, Chem. Phys. Lett.,82, No. 3, 421 (1981).

    Google Scholar 

  15. V. S. Dubov, Ya. E. Lapsker, A. N. Samoilova, and L. V. Gurvich, Chem. Phys. Lett.,83, No. 3, 518 (1981).

    Google Scholar 

  16. S. L. Shostak and R. L. Strong, Chem. Phys. Lett.,63, No. 2, 370 (1979).

    Google Scholar 

  17. B. E. Wilkomb and R. Burnham, J. Chem. Phys.,74, No. 12, 6784 (1981).

    Google Scholar 

  18. B. L. Borovich and V. S. Zuev, Zh. Éksp. Teor. Fiz.,58, 1794 (1970).

    Google Scholar 

  19. J. Weiner, J. Chem. Phys.,72, No. 10, 5731 (1980).

    Google Scholar 

  20. N. G. Basov and V. S. Zuev, Nuovo Cimento,31B, No. 1, 129 (1976).

    Google Scholar 

  21. L. D. Mikheev, Kvantovaya Élektron. (Moscow),5, No. 6, 1189 (1978).

    Google Scholar 

  22. V. S. Zuev, L. D. Mikheev, and A. P. Shirokikh, ibid.,9, 573 (1982).

    Google Scholar 

  23. J. Lee and A. D. Walsh, Trans. Far. Soc.,55, No. 8, 1281 (1959).

    Google Scholar 

  24. V. S. Zuev, A. V. Kanaev, and L. D. Mikheev, Kvantovaya Élektron. (Moscow),11, 345 (1984).

    Google Scholar 

  25. S. D. Peyerimhoff and R. J. Duenker, Chem. Phys.,57, 279 (1981).

    Google Scholar 

  26. Tellinghuisen, Chem. Phys. Lett.,49, No. 3, 485 (1977).

    Google Scholar 

  27. A. K. Hays, Opt. Commun.,28, No. 2, 209 (1979).

    Google Scholar 

  28. L. D. Mikheev, “Optical pumping of gas lasers on the phases of electron-phototransport processes: review and suggestions,” Preprint No. 296, FIAN, Moscow (1983).

    Google Scholar 

  29. D. P. Greene, K. P. Killeen, and J. Q. Eden, Appl. Phys. Lett.,48, 1175 (1986).

    Google Scholar 

  30. J. Maya, IEEE J. Quant. Electron.,QE-15, No. 7, 579 (1979).

    Google Scholar 

  31. J. G. Eden, Appl. Phys. Lett.,38, No. 6, 495 (1978).

    Google Scholar 

  32. S. P. Bazhulin, N. G. Basov, S. N. Bugrimov, V. S. Zuev, A. S. Mamrukov, G. N. Kashnikov, N. P. Kozlov, P. A. Ovchinnikov, A. T. Opekan, V. K. Orlov, and Yu. S. Protasov, Kvantovaya Élektron. (Moscow),13, 1275 (1986).

    Google Scholar 

  33. S. P. Bazhulin, N. G. Basov, S. N. Bugrimov, V. S. Zuev, A. S. Mamrukov, G. N. Kashnikov, N. P. Kozlov, P. A. Ovchinnikov, A. G. Opekan, and Yu. S. Protasov, ibid.,13, 1515 (1986).

    Google Scholar 

  34. B. E. Wilkomb, R. Burnham, and N. Djeu, Chem. Phys. Lett.,75, No. 2, 239 (1980).

    Google Scholar 

  35. E. J. Schimitschek, J. E. Celto, and J. A. Trias, Appl. Phys. Lett.,31, 608 (1977).

    Google Scholar 

  36. S. P. Bazhulin, N. G. Basov, V. S. Zuev, Yu. S. Leonov, and Yu. Yu. Stoilov, Kvantovaya Élektron. (Moscow),5, 684 (1978).

    Google Scholar 

  37. S. P. Bazhulin, N. G. Basov, S. N. Bugrimov, V. S. Zuev, A. S. Kamrukov, N. P. Kozlov, A. G. Opekan, and Yu. S. Protasov, Pis'ma Zh. Tekh. Fiz.,12, 1423 (1986).

    Google Scholar 

  38. E. J. Schimitschek and J. E. Celto, Opt. Lett.,2, 64 (1978).

    Google Scholar 

  39. S. P. Bazhulin, N. G. Basov, S. N. Bugrimov, V. S. Zuev, As. Kamrukov, G. N. Kashnikov, N. P. Kozlov, P. A. Ovchinnikov, A. G. Opekan, V. K. Orlov, and Yu. S. Protasov, Kvantovaya Élektron. (Moscow)13, 1017 (1986).

    Google Scholar 

  40. A. Terenin and N. Prilezhajeva, “Photodissociation of the vapors of some organometallic compounds,” Acta Physicochimica URSS,1, 759 (1935).

    Google Scholar 

  41. G. G. Neuimin, “Photodissociations of molecules of salts in the gaseous state,” in: Elementary Photoprocesses in Molecules [in Russian], Nauka, Moscow-Leningrad (1966), p. 7.

    Google Scholar 

  42. A. W. McCown and J. G. Eden, Appl. Phys. Lett.,39, 371 (1980).

    Google Scholar 

  43. A. W. McCown, M. N. Ediger, and J. G. Eden, Opt. Commun.,40, 190 (1982).

    Google Scholar 

  44. M. N. Ediger, A. W. McCowen, and J. G. Eden, Appl. Phys. Lett.,40, 99 (1982).

    Google Scholar 

  45. S. G. Diner, H. U. Daniel, and H. Walter, Opt. Commun.,41, 117 (1982).

    Google Scholar 

  46. G. Black, R. L. Sharpless, D. C. Lorents, D. L. Huestis, R. A. Gutcheek, T. D. Bonifield, D. A. Helms, and G. K. Walters, J. Chem. Phys.,75, 4840 (1981).

    Google Scholar 

  47. N. M. Bibinov, I. P. Vinogradov, L. D. Mikheev, and D. B. Stavrovskii, Kvantovaya Élektron. (Moscow),8, 1945 (1981).

    Google Scholar 

  48. N. G. Basov, V. S. Zuev, A. V. Kanaev, L. D. Mikheev, and V. I. Yalovoi, ibid.,4, 2453 (1977).

    Google Scholar 

  49. J. G. Eden, Opt. Lett.,3, 94 (1978).

    Google Scholar 

  50. N. G. Basov, V. S. Zuev, A. V. Kanaev, L. D. Mikheev, and D. V. Stavrovskii, Kvantovaya Élektron. (Moscow),6, 1074 (1979).

    Google Scholar 

  51. V. S. Zuev, L. D. Mikheev, and D. B. Stavrovskii, ibid.,11, 1080 (1984).

    Google Scholar 

  52. V. S. Zuev, L. D. Mikheev, and D. B. Stavrovskii, ibid.,11, 1750 (1984).

    Google Scholar 

  53. R. W. F. Gross, L. E. Schneider, and S. T. Amimoto, Appl. Phys. Lett.,53, 2365 (1988).

    Google Scholar 

  54. W. K. Bishel, H. H. Nakano, D. J. Eckstrom, R. M. Hill, D. L. Huestis, and D. C. Lorents, Appl. Phys. Lett.,34, 565 (1979).

    Google Scholar 

  55. V. S. Zuev, A. V. Kanaev, L. D. Mikheev, and D. B. Stavrovskii, Trudy FIAN,125, 3 (1980).

    Google Scholar 

  56. W. K. Bishel, D. J. Eckstrom, H. C. Walker, Jr., and R. A. Tilton, J. Appl. Phys.,52, 4429 (1981).

    Google Scholar 

  57. D. J. Eckstrom and H. C. Walker, Jr., IEEE J. Quantum Electron.,QE-18, 176 (1982).

    Google Scholar 

  58. V. M. Buchnev, A. D. Klementov, V. M. Nesterov, S. A. Pendyur, P. B. Sergeev, B. N. Toleutaev, and S. V. Shul'ga, Kvantovaya Élektron. (Moscow),10, 647 (1983).

    Google Scholar 

  59. A. V. Adushkin, N. G. Basov, V. A. Danilychev, V. A. Dolgikh, Yu. F. Myznikov, and G. Yu. Tamanyan, Pis'ma Zh. Tekh. Fiz.,9, 757 (1983).

    Google Scholar 

  60. N. G. Basov, E. P. Glotov, V. A. Danilychev, V. A. Dolgikh, O. M. Kerimov, Yu. F. Myznikov, A. M. Soroka, G. Yu. Tamanyan, and N. V. Cheburkin, Kvantovaya Électron. (Moscow),11, 1162 (1984).

    Google Scholar 

  61. G. N. Kashikov, N. P. Kozlov, V. A. Platonov, V. A. Reznikov, and V. A. Sorokin, ibid.,11, 2129 (1984).

    Google Scholar 

  62. V. S. Zuev, G. N. Kashnikov, N. P. Kozlov, S. B. Mamaev, V. K. Orlov, and V. A. Sorokin, ibid.,13, 2521 (1986).

    Google Scholar 

  63. V. S. Zuev, A. V. Kanaev, L. D. Mikheev, and D. B. Stavrovskii, ibid.,8, 2183 (1981).

    Google Scholar 

  64. K. Okabe, A. H. Laufer, and J. J. Ball, J. Chem. Phys.,55, 373 (1971).

    Google Scholar 

  65. M. W. Wilson, M. Rothschild, and C. K. Rhodes, J. Chem. Phys.,78, 3779 (1983).

    Google Scholar 

  66. H. Okabe, M. Kawasaki, and Y. Tanaka, J. Chem. Phys.,73, 6162 (1980).

    Google Scholar 

  67. N. G. Basov, V. S. Zuev, L. D. Mikheev, and Yu. Yu. Stoilov, Izv. Akad. Nauk SSSR, Ser. Fiz.,46, 1519 (1982).

    Google Scholar 

  68. N. K. Bobinov and I. P. Vinogradov, Khim. Fiz.,3, 836 (1984).

    Google Scholar 

  69. V. S. Zuev, L. D. Mikheev, and V. I.Yalovoi, Kvantovaya Élekron. (Moscow),9, 1064 (1982).

    Google Scholar 

  70. A. Terenin, Z. Phys.,44, 713 (1927); Phys. Rev.,36, 147 (1930).

    Google Scholar 

  71. K. Wieland, Z. Phys.,76, 801 (1932); Z. Phys.,77, 157 (1932); Helv. Phys. Acta,2, 46 (1929).

    Google Scholar 

  72. B. L. Borovich, V. S. Zuev, V. A. Katulin, L. D. Mikheev, F. A. Nikolaev, O. Yu. Nosach, and V. B. Rozanov, “High-current emitting discharges and optically pumped gas lasers (Itogi Nauki i Tekhniki, Ser. “Radiotekhnika), Vol. 15, VINITI, Moscow (1978).

    Google Scholar 

  73. S. B. Hutchison, J. G. Eden, and J. J. Verdeyen, Appl. Phys. Lett.,37, 374 (1980).

    Google Scholar 

  74. K. P. Killen and J. G. Eden, Appl. Phys. Lett.,43, 9 (1983).

    Google Scholar 

  75. K. P. Killen and J. G. Eden, J. Opt. Soc. Am. B.,2, 430 (1985).

    Google Scholar 

  76. H. Hemmati and G. J. Collins, Chem. Phys. Lett.,67, 5 (1979); Chem. Phys. Lett.,75, 488 (1980).

    Google Scholar 

  77. A. L. Guy, K. S. Viswanathan, A. Sur, and J. Tellinghuisen, Chem. Phys. Lett.,73, 582 (1980).

    Google Scholar 

  78. V. N. Baboshin, L. D. Mikheev, A. V. Pavlov, V. P. Fokanov, M. A. Khodarovskii, and A. P. Shirokikh, Kvantovaya Élektron. (Moscow),8, 1138 (1981).

    Google Scholar 

  79. H. S. W. Massey, Negative Ions, Cambridge Univ. Press (1976).

  80. B. L. Borovich, V. S. Zuev and D. B. Stavrovskii, J. Quantum Spectrosc. Radiat. Transfer,13, 1241 (1973).

    Google Scholar 

  81. B. L. Borovich, V. S. Zuev, and D. B. Stavrovskii, Kvantovaya Élektron. (Moscow)1, 204 (1974).

    Google Scholar 

  82. R. Broadman and G. Zimmerer, Chem. Phys. Lett.,56, 434 (1978).

    Google Scholar 

  83. V. S. Zuev, A. V. Kanaev, and L. D. Mikheev, Kvantovaya Élektron. (Moscow),14, 1393 (1987).

    Google Scholar 

  84. V. S. Zuev, A. V. Kanaev, and L. D. Mikheev, “The relaxation process in excited xenon,” Preprint No. 95, FIAN, Moscow (1988)

    Google Scholar 

  85. R. Cooper, F. Grieser, and M. C. Sauer, Jr., J. Phys. Chem.,81, No. 20, 1889 (1977).

    Google Scholar 

  86. N. K. Bibinov, I. P. Vinogradov, and L. D. Mikheev, Kvantovaya Élektron. (Moscow)10, No. 4, 794 (1983).

    Google Scholar 

  87. H. Hemmati and G. J. Collins, J. Appl. Phys.,51, 2961 (1980).

    Google Scholar 

  88. K. J. Tang, D. C. Lorents, R. L. Sharpless, D. L. Huestis, D. Helms, M. Durrett, and G. K. Walters, SRI Rep. JA-1522-9 (1980).

  89. S. G. Tolford, M. L. Ginter, and J. J. Vanderslice, J. Mol. Spectrosc.,33, 505 (1970).

    Google Scholar 

  90. V. S. Zuev, A. V. Kanaev, and L. D. Mikheev, Kvantovaya Élektron. (Moscow),11, 354 (1984).

    Google Scholar 

  91. N. K. Bibinov and I. P. Vinogadov, Khim. Fiz.,2, 1624 (1983).

    Google Scholar 

  92. N. K. Bibinov and I. P. Vinogradov, Khim. Vys. Énerg.,18, 448 (1984).

    Google Scholar 

  93. V. S. Zuev, A. V. Kanaev, and L. D. Mikheev, Kvantovaya Élektron. (Moscow),14, 1397 (1987).

    Google Scholar 

  94. E. Hontzopoulos and C. Fotakis, Proc. of the XIII-th Int. Conf. on Photochemistry, Budapest (1987), p. 317.

  95. B. Jordan, DESY, Hamburg (interner bericht), Hasylab 83-09, 1983.

  96. D. J. Ehrlich and R. M. Osgood, Jr., J. Chem. Phys.,73, 3038 (1980).

    Google Scholar 

  97. M. C. Castex, J. LeCalve, D. Haaks, B. Jordan, and G. Zimmerer, Chem. Phys. Lett.,70, 106 (1980).

    Google Scholar 

  98. J. LeCalve, M. C. Castex, D. Haaks, B. Jordan, and G. Zimmerer, Il Nuovo Cimento,63B, 265 (1981).

    Google Scholar 

  99. G. Zimmmerer, “Kinetics of excited states produced by synchrotron radiation,” in: Photophysics and Photochemistry above 6 eV, F. Lahmani (ed.), Elsevier, Amsterdam (1985).

    Google Scholar 

  100. M. W. Wilson, M. Rothschild, and C. K. Rhodes, J. Chem. Phys.,78, 3779 (1983).

    Google Scholar 

  101. T. Moller, B. Jordan, G. Zimmerer, D. Haaks, J. Le Calve, and M.-C. Castex, Z. Phys. D — Atoms, Molecules and Clusters,4, 73 (1986).

    Google Scholar 

  102. N. K. Bibinov and I. P. Vinogradov, Opt. Spektrosk.,59, 317 (1985).

    Google Scholar 

  103. M. H. R. Hutchinson, Chem. Phys. Lett.,54, No. 2, 359 (1978).

    Google Scholar 

  104. M. F. Golde and B. A. Thrush, Chem. Phys. Lett.,29, No. 4, 486 (1974).

    Google Scholar 

  105. A. A. Radtsig and B. M. Smirnov, Handbook of Atomic and Molecular Physics [in Russian], Atomizdat, Moscow (1980).

    Google Scholar 

  106. V. N. Kondart'ev (ed.), Chemical Bond Breaking Energies. Ionization Potentials and Electron Affinity [in Russian] (L. V. Gurvich, G. V. Karachevtsev, V. N. Kondrat'ev, et al.), Nauka, Moscow (1974).

    Google Scholar 

  107. N. Basco and R. D. Morse, Proc. R. Soc. (Lond.),A336, 495 (1974).

    Google Scholar 

  108. H. Okabe, Photochemistry of Small Molecules, Wiley (1974).

  109. C. M. Humphries, A. D. Walsh, and P. A. Warsop, Disc. Far. Soc., No. 35, 148 (1963).

    Google Scholar 

  110. P. Venkateswarlu, Can. J. Phys.,47, No. 22, 2525 (1969).

    Google Scholar 

  111. A. M. Pravilov, F. I. Vilesov, V. A. Elokhin, V. S. Ivanov, and A. S. Kozlov, Kvantovaya Élektron. (Moscow)5, No. 3, 618 (1978).

    Google Scholar 

  112. G. Herzberg, Moleclar Spectra and Molecular Structure, Vol. 3, Electronic Spectra and Electronic Structure of Polyatomic Molecules, Van Nostrand, N.Y. (1966).

  113. V. S. Dubov, Ya. E. Lapsker, and L. V. Gurvich, Dokl. Akad. Nauk SSSR,291, 1403 (1986).

    Google Scholar 

  114. A. K. Babaev and V. S. Dubov, Kvantovaya Élektron. (Moscow)15, 828 (1988).

    Google Scholar 

  115. N. G. Basov, V. A. Danilychev, V. A. Dolgikh, O. M. Kerimov, V. S. Lebedev, and A. G. Molchanov, Pis'ma Zh. Éksp. Teor. Fiz.,26, No. 1, 20 (1977).

    Google Scholar 

  116. D. C. Lorents, D. L. Huestis, M. V. McCusker, H. H. Nakano, and R. M. Hill, J. Chem. Phys.,68, No. 10, 4657 (1978).

    Google Scholar 

  117. I. N. Konovalov, V. F. Losev, V. V. Ryzhov, V. S. Tarasenko, and A. G. Yastremskii, Opt. Spektrosk.,47, No. 2, 239 (1979).

    Google Scholar 

  118. H. C. Brashears, Jr., D. W. Setser, and Y.-G. Yu, J. Chem. Phys.,74, No. 1, 10 (1981).

    Google Scholar 

  119. W. Walter, R. Sauerbrey, F. K. Tittel, and W. L. Wilson, Jr., Appl. Phys. Lett.,41, No. 5, 387 (1982).

    Google Scholar 

  120. I. V. Chaltakov, N. I. Minkovsky, and I. V. Tomov Opt. Commun.,65, 33 (1988).

    Google Scholar 

  121. N. G. Basov, V. S. Zuev, A. V. Kanaev, L. D. Mikheev, and D. B. Stavrovskii, Kvantovaya Élektron. (Moscow),7, No. 12, 2660 (1980).

    Google Scholar 

  122. N. G. Basov, V. S. Zuev, A. V. Kanaev, and L. D. Mikheev, ibid.,12, 1954 (1985).

    Google Scholar 

  123. V. S. Zuev, A. V. Kanaev, L. D. Mikheev, and D. B. Stavrovski, ibid.,8, No. 10, 2183 (1981).

    Google Scholar 

  124. N. K. Bibinov and I. P. Vinogadov, Opt. Spektrosk.,57, 729 (1984).

    Google Scholar 

  125. T. H. Miller, J. H. Ling, R. P. Saxon, and J. T. Moseley, Phys. Rev. A,13, 2171 (1976).

    Google Scholar 

  126. S. D. Peyerimhoff and R. J. Buenker, Chem. Phys.,57, 279 (1981).

    Google Scholar 

Download references

Authors

Additional information

Quantum Radiophysics Laboratory, Lebedev Physics Institute. Translated from Preprint No. 23 of the Lebedev Physics Institute, Academy of Sciences of the USSR, Moscow, 1990.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mikheev, L.D. Use of photoprocesses with charge transfer to excite active laser media. J Russ Laser Res 11, 288–304 (1990). https://doi.org/10.1007/BF01120629

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01120629

Keywords

Navigation