Skip to main content
Log in

Spatiotemporal characteristics of laser emission. III. Propagation of electromagnetic radiation beam in laser installations with allowance for large-angle diffraction and spatial self-focusing

  • Published:
Journal of Soviet Laser Research Aims and scope

Abstract

In parts 1 and 2, the electrodynamic theory developed for the laser as a nonstationary nonlinear oscillating system with spatially distributed parameters was applied to specific laser types. The subject of part 3 is designated in the title.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  1. N. E. Bykovskii, V. V. Ivanov, and Yu. V. Senatskii, “Intensity profiles of local perturbations in a laser beam propagating in a nonlinear medium,” Trudy FIAN,149, 150–161 (1985).

    Google Scholar 

  2. N. B. Baranova, N. E. Bykovskii, B. Ya. Zel'dovich, et al., “Diffraction and self-focusing in an amplifier of high-power light pulses,” Kvantovaya Élektron. (Moscow),1, No. 11, 2435–2448 (1974).

    Google Scholar 

  3. A. Dubik, and K. Jachi, “Diffraction by sharp and apodized apertures in high-power laser system,” Biul. WATJ Dabrowskiego,28, No. 3, 111–122 (1979).

    Google Scholar 

  4. Yu. K. Danileiko, A. A. Manenkov, and V. M. Nechitailo, “Investigation of laser bulk damage and light scattering in crystals and glasses,” Trudy FIAN,101, 31–74 (1978).

    Google Scholar 

  5. P. Jasquinof and B. Roizen-Dossier, Progress in Optics, Vol. 3, (1964), p. 31.

    Google Scholar 

  6. V. R. Costich and B. S. Johnson, “Apertures to shape high-power beams,” Laser Focus, No. 9, 43–46 (1974).

    Google Scholar 

  7. A. J. Campillo, B. Carpenter, B. E. Newman, et al., “Soft apertures for reducing damage in high-power laser-amplifier systems,” Opt. Commun.,10, No. 4, 313–315 (1974).

    Google Scholar 

  8. G. R. Hadley, “Diffraction by apodized apertures,” IEEE J. Quantum Electron.,8, No. 8, 603–608 (1974).

    Google Scholar 

  9. H. T. Hunt, P. A. Renard, and W. W. Simmons, “Improved performance of fusion lasers using the imaging multiple spatial filters,” Appl. Opt.,16, No. 4, 779–784 (1977).

    Google Scholar 

  10. N. B. Baranov, N. E. Bykovskii, Yu. V. Senatskii, et al., “Nonlinear processes in the optical media of high-power neodymium lasers,” Trudy FIAN,103, 84–117 (1978).

    Google Scholar 

  11. I. K. Krasyuk, S. G. Lukishova, P. P. Pashinin, et al., “Formation of transverse distribution of laser-beam intensity with the aid of ‘soft’ diaphragms,” Kvantovaya Élektron. (Moscow),3, No. 6, 1337–1340 (1976).

    Google Scholar 

  12. V. N. Belyaev, N. E. Bykovskii, Yu. V. Senatskii, et al., “Formation of absorbing layers in the optical medium of a neodymium laser by penetrating radiation,” ibid.,3, No. 10, 2286–2290 (1976).

    Google Scholar 

  13. V. N. Alekseev, A. D. Starikov, and V. N. Chernov, “Optimization of spatial profile of high-power light beam in the amplifying channel of a neodymium-glass laser facility,” ibid.,6, No. 11, 2374–2381 (1979).

    Google Scholar 

  14. V. G. Gorshkov and V. K. Ivanchenko, V. K. Karpovich, et al., “Apodizing diaphragms based on induced absorption with large light-beam diameter, and their investigation in high-power laser facilities at 1.06 μm wavelength,” ibid.,12, No. 7, 1453–1459 (1985).

    Google Scholar 

  15. M. E. Brodov, F. F. Makenets, V. V. Korobkin, et al., “Soft aperture based on an amplifier with profiled inversion,” ibid.,6, No. 2 377–379 (1979).

    Google Scholar 

  16. A. Penzkofer and W. Frohlich, “Apodization of high-intensity laser beams using saturating dye” Opt. Commun.,28, No. 2, 197–201 (1979).

    Google Scholar 

  17. V. I. Bayanov, A. A. Mak, V. A. Serbryakov, et al., “Investigation of self-focusing in neodymium-glass laser amplifiers and its suppression with the aid of spatial filtration,” Kvantovaya Élektron. (Moscow),6, No. 5, 902–910 (1979).

    Google Scholar 

  18. J. H. Hunt, J. A. Glaze, W. W. Simmons, et al., “Suppression of self-focusing through low-pass spatial filtering and relay imaging,” Appl. Opt.,17, No. 13, 2053–2056 (1978).

    Google Scholar 

  19. W. W. Simmons, J. T. Hunt, and W. E. Warren, “Light propagation through large laser systems,” IEEE J. Quantum Electron.,17, No. 13, 2053–2056 (1978).

    Google Scholar 

  20. V. M. Gulevich, V. V. Korobkin, A. M. Prokhorov et al., “Laser system based on phosphate glass with maximum parameters,” FIAN Preprint No. 99, Moscow (1982).

  21. R. Speck, “Laser system performance,” Laser Program Annu. Rep. 1978: Lawrence Livermore Nat. Lab. Rep. UCRL-50021-78. 1979. P.2.5–2.13.

  22. S. Denus, A. Dubik, B. Kaczmarczyk, et al., “Optimized four-channel Nd: glass laser system for compression experiments,” Laser and Particle Beams, No. 9, P.1–21 (1985).

    Google Scholar 

  23. Laser Program Annu.-Rep.-1976: Lawrence Livermore Nat. Lab. Rep. UCRL-50021-76(1977), p. 324.

  24. A. N. Zherikhin, Yu. A. Matveets, and S. V. Chekalin, “Brightness limitation by self-focusing in amplification of an ultrashort pulse in neodymium glass and in yttrium-aluminum garnet,” Kvantovaya Élektron. (Moscow),3 No. 3, 1585–1590 (1976).

    Google Scholar 

  25. E. S. Bliss, D. R. Speck, J. F. Holzrichter, et al., “Propagation of a high-intensity laser pulse with small-scale intensity modulation,” Appl. Phys. Lett.,25, No. 6, 448–453 (1974).

    Google Scholar 

  26. J. Trenholme, “Small-scale instability growth,” Laser Program Annu. Rep. 1974: Lawrence Livermore Nat. Lab. Rep. UCRL-50021-74. 1975. 179–205.

  27. E. S. Bliss, J. T. Hunt, P. A. Renard, et al., “Effects of nonlinear propagation on laser focusing properties,” IEEE J. Quantum Electron.,12, No. 3 402–406 (1976).

    Google Scholar 

  28. Yu. V. Senatskii, “Active elements for a high-power neodymium-glass laser facility,” Kvantovaya Élektron. (Moscow), No. 5, 109–112 (1971).

    Google Scholar 

  29. S. N. Vlasov, “Instability of intense plane wave in a periodic nonlinear medium,” ibid.,3, No. 2, 451–454 (1976).

    Google Scholar 

  30. S. N. Vlasov, “Stabilization of instability of a plane wave in a periodic system,” Pis'ma Zh. Tekh. Fiz.,4, No. 13, 795–800 (1978).

    Google Scholar 

  31. K. Sh. Mustaev, V. A. Serebryakov, and V. E. Yashin, “Suppression of small-scale self-focusing in neodymium-glass amplifiers with the aid of optical retranslators,” ibid.,6 No. 14, 856–859 (1980).

    Google Scholar 

  32. J. F. Holzrichter, D. Eimerl, E. V. George, et al., “High-power pulsed lasers,” Physics of Laser Fusion: Lawrence Livermore Nat. Lab. Rep. UCRL-52868, rev. 1. 1982. p. 1–30.

  33. P. G. Kryukov, Yu. A. Matveets, Yu. V. Senatskii, et al., “Mechanisms for energy and radiation-power limitation in amplification of ultrashort pulses in neodymium-glass lasers,” Kvantovaya Élektron. (Moscow), No. 2, (14), 102–105 (1973).

    Google Scholar 

  34. L. A. Bol'shov, L. I. Degtyarev, A. M. Dykhne, et al., “Numerical investigation of small-scale focusing of light in neodymium-glass amplifiers,” IAE Preprint No. 109, Moscow (1979).

  35. N. N. Rozanov and V. A. Smirnov, “Small-scale self-focusing of laser radiation in amplifier systems” Kvantovaya Élektron. (Moscow),7, No. 2, 410–413 (1980).

    Google Scholar 

  36. S. M. Babichenko, N. E. Bykovskii, and Yu. V. Senatskii, “Self-focusing of a laser beam in a nonlinear medium with local perturbations,” FIAN Preprint No. 14, Moscow (1981).

  37. N. N. Rozanov and V. A. Smirnov, “Small-scale self-focusing of bounded beams,” Kvantovaya Élektron. (Moscow),5, No. 12, 2538–2549 (1978).

    Google Scholar 

  38. W. Seka, J. Soures, O. Lewis, et al., “High-power phosphate-glass laser system: design and performance characteristics,” Appl. Opt.,19, No. 3, 409–419 (1980).

    Google Scholar 

  39. M. V. Pyatakhin and A. F. Suchkov, “Diffraction of plane electromagnetic wave by a round diaphragm,” FIAN Preprint No. 254, Moscow (1985).

  40. L. A. Vainshtein, Open Cavities and Open Waveguides [in Russian], Sov. Radio, Moscow (1966).

    Google Scholar 

  41. A. G. Fox and T. Li, “Resonant modes in laser interferometer,” Bell System Tech. J.,40, No. 2, 453–465 (1961).

    Google Scholar 

  42. P. Ya. Ufimtsev, Method of Edge Waves in Physical Theory of Diffraction [in Russian], Sov. Radio, Moscow (1962).

    Google Scholar 

  43. M. Born and E. Wolf, Principles of Optics, Pergamon (1970).

  44. A. A. Vertii, I. V. Ivanchenko, N. A. Popenko, et al., “Investigation of wave emission from quasi-optical cavities,” Izv. Vyssh. Uchebn. Zaved., Radiofiz.,27, No. 12, 1536–1544 (1984).

    Google Scholar 

  45. H. Hönl, A. Maue, and E. Westpfahl, in: Handbuch der Physik, Vol. 23, Vol. 1, Springer, Berlin (1963).

    Google Scholar 

  46. M. G. Belkina, “Diffraction of electromagnetic wave by a disk,” in: Diffraction of Electromagnetic Waves by Certain Bodies of Revolution [in Russian], Sov. Radio, Moscow (1957), pp. 64–69.

    Google Scholar 

  47. A. Rubinowicz, “Die Beugungswelle in der Kirchhoffschen Teorie,” Ann. Phys.53, 257–264 (1917).

    Google Scholar 

  48. M. B. Vinogradov, O. V. Rudenko, and A. P. Sukhorukov, Field Theory [in Russian], Nauka, Moscow (1979).

    Google Scholar 

  49. B. B. Baker and E. T. Copson, The Mathematical Theory of Huygen's Principle, Oxford Univ. Press (1950).

  50. J. A. Stratton, Electromagnetic Theory. McGraw-Hill (1961).

  51. F. Kottler, “Electromagnetische Theorie der Beugung,” Ann. d. Phys.,71, 457–492 (1923).

    Google Scholar 

  52. W. E. Fran, “Beugung electomagnetischer Wellen in Braunbekscher Naherung,” Zs. F. Phys.,156, 78–98 (1959).

    Google Scholar 

  53. W. Franz, “Zur Theorie der Beugung,” Zs. f. Phys.,125, 563–596 (1949).

    Google Scholar 

  54. M. V. Pyatakhin and A. F. Suchkov, “Large-angle diffraction in the Kirchhoff-Kottler approximation, FIAN Preprint No. 32, Moscow (1988).

  55. M. V. Pyatakhin and A. F. Suchkov, “Effective method of solving the diffraction problem,” Kvantovaya Élektron. (Moscow),16, No. 2, 295–297 (1989).

    Google Scholar 

  56. Yu. A. Anan'ev, Optical Cavities and the Problem of Laser-Radiation Divergence [in Russian], Nauka, Moscow (1979).

    Google Scholar 

  57. M. V. Pyatakhin and A. F. Suchkov, “Small-scale structure and depolarization of electromagnetic field in diffraction of a plane wave by a round diaphragm,” Kratk. Soobshch. Fiz. FIAN, No. 12, 21–24 (1986).

    Google Scholar 

  58. D. D. McCracken and W. S. Dorn, Numerical Methods and Fortran Programming, Wiley (1964).

  59. G. A. Askar'yan, “Action of field gradient of an intense electromagnetic beam on electrons and atoms,” Zh. Éksp. Teor. Fiz.,42, No. 6, 1567–1570 (1962).

    Google Scholar 

  60. V. N. Lugovoi and A. M. Prokhorov “Theory of propagation of high-power laser radiation in a nonlinear medium,” Usp. Fiz. Nauk,111, No. 2, 203–247 (1973).

    Google Scholar 

  61. G. A. Askar'yan “The self-focusing effect,” ibid.,111, No. 2, 249–260 (1973).

    Google Scholar 

  62. A. A. Amosov, N. S. Bakhvalov, Ya. M. Zhileikin et al., “Self-focusing of wave beams with plateau-like intensity distributions,” Pis'ma Zh. Éksp. Teor. Fiz.,30, No. 2, 119–122 (1979).

    Google Scholar 

  63. A. B. Borisov, A. B. Zhileikin, V. V. Korobkin, et al., “Stability of self-focusing of wave beams at various transverse intensity distributions,” 2nd All-Union Conf. on Coherent and Nonlinear Optics, Abstracts, Erevan, Part II, 175–177. (1982).

  64. G. M. Fraiman, “Asymptotic stability of a manifold of self-similar solutions in self-focusing,” Zh. Éksp. Teor. Fiz.,88, No. 2, 390–400 (1985).

    Google Scholar 

  65. S. N. Vlasov, L. V. Piskunova, and V. I. Talanov, “Field structure near a singularity produced in self-focusing in a cubic medium,” ibid.,75, No. 5(11), 1602–1609 (1978).

    Google Scholar 

  66. V. E. Zakharov and V. S. Synakh, “Character of singularity in self-focusing,” ibid.,68, No. 5, 940–944 (1975).

    Google Scholar 

  67. V. E. Zakharov, V. V. Sobolev, and V. S. Synakh, “Character of singularity and of stochastic phenomena in self-focusing,” Pis'ma Zh. Éksp. Teor. Fiz.,14, 564–568 (1971).

    Google Scholar 

  68. Yu. N. Karamzin, A. P. Sukhorukov, and V. A. Trofimov, “Nonlinear distortions of hypergauss beams,” Izv. Vyssh. Ucheb. Zaved., Radiofiz.,27, No. 10, 1291–1298 (1984).

    Google Scholar 

  69. V. I. Bespalov and V. I. Talanov, “Filamentary structure of light beams in nonlinear liquids,” Pis'ma Zh. Éksp. Teor. Fiz.,3, No. 12, 471–475 (1966).

    Google Scholar 

  70. A. A. Balagur and V. A. Shcheglov, “Filamentation of the field structure of electromagnetic radiation in nonlinear media,” FIAN Preprint No. 224, Moscow (1986).

  71. I. G. Lebo, I. Lampoukh, and V. B. Rozanov, “Numerical investigation of filamentation and self-focusing of laser beams in the corona of spherical targets,” FIAN Preprint No. 280, Moscow (1983).

  72. N. N. Rozanov and V. A. Smirnov, “On the theory of propagation of plane waves in nonlinear continuous media,” Pis'ma Zh. Éksp. Teor. Fiz.,75, 544–548 (1979).

    Google Scholar 

  73. I. V. Aleksandrov, N. G. Basov, A. E. Danilov, et al., “Limits of possibilities of the laser method of heating spherical targets,” Trudy FIAN,149, 42–59 (1985).

    Google Scholar 

  74. Numerical Analysis with Fortran. Standard Programs for Solving Wave-Physics Problems. Anthology ed. by V. V. Voevodin, Moscow State Univ. Press (1979).

  75. M. S. Sodha, A. K. Chatak, and V. K. Tripathi, “Self-focusing of laser beams in dielectrics, plasmas, and semiconductors,” New Delhi: McGraw-Hill (1974).

    Google Scholar 

  76. M. V. Pyatakhin and A. F. Suchkov, “Two-dimensional self-focusing of beams and of small-scale perturbations,” FIAN Preprint No. 37, Moscow (1987).

  77. M. V. Pyatakhin and A. F. Suchkov “Small-scale two-dimensional self-focusing,” Dokl. Akad. Nauk SSSR,299, No. 4, 868–872 (1988).

    Google Scholar 

  78. P. L. Kelley, “Self-focusing of optical beams,” Phys. Rev. Lett.,15, 1005–1010 (1965).

    Google Scholar 

  79. A. V. Borovskii, A. L. Galkin, V. V. Korobkin, et al., Preprint No. 54, L. V. Keldych Institute, Moscow (1987).

  80. K. D. Egorov and V. P. Kandidov, “Self-focusing of elliptic-cross-section beams,” Vestn. Mosk. Gos. Univ., Fiz. Astron.,19, No. 2, 70–75 (19878).

    Google Scholar 

  81. V. I. Talanov, “Self-similar wave beams in a nonlinear dielectric,” Izv. Vyssh. Uchebn. Zaved., Radiofiz.,9, No. 2, 410–412 (1986).

    Google Scholar 

  82. A. L. Ryzhko, V. N. Lugovoi, and A. M. Prokhorov, Pis'ma Zh. Éksp. Teor. Fiz.6, 655 (1967).

    Google Scholar 

  83. S. A. Darznek and A. F. Suchkov, Kvantovaya Élektron. (Moscow), No. 4, 109–112 (1971).

    Google Scholar 

  84. V. I. Talanov, “Self-focusing of electromagnetic waves in nonlinear media,” Izv. Vyssh. Uchebn. Zaved., Radiofiz.,7, No. 3, 564–565 (1964).

    Google Scholar 

  85. B. Z. Katsenelenbaum, Zh. Éksp. Teor. Fiz.,19, No. 10, 574 (1949).

    Google Scholar 

  86. L. A. Vainshtein, Electromagnetic Waves [in Russian], Sovet-skoe Radio, Moscow (1957).

    Google Scholar 

  87. A. P. Sukhorukov, V. V. Timofeev, and V. V. Trofimov, “Cancellation of nonlinear distortions of light beams by aberration mirrors,”, Izv. Vyssh. Ucheb. Zaved., Radiofiz.,27, No. 12, 1514–1524 (1984).

    Google Scholar 

  88. A. N. Tikhonov, V. Ya. Arsenin, V. I. Pavlov, et al., “Thermooptic distortions and large-scale self-focusing in active elements of high-power laser systems,” Kvantovaya Élektron. (Moscow),11, No. 9, 1784–1793 (1984).

    Google Scholar 

  89. I. M. Belousov N. V. Vysotina, V. A. Griogor'ev, et al., “Distortions of wave front of laser radiation by thermal selfaction, and their adaptive compensation,” Izv. AN SSSR, Ser. Fiz.,48, No. 12, 2299–2303 (1984).

    Google Scholar 

  90. I. N. Kozhevnikova, A. P. Sukhorukov, and V. A. Trofimov, “Cancellation of nonlinear distortions of light beams in a moving medium,” Izv. Vyssh. Ucheb. Zaved., Fiz.,28, No. 2, 13–19 (1983).

    Google Scholar 

  91. M. A. Vorontsov, A. N. Matveev, and V. P. Sivokon' “Optimal control of wave front in problems of radiation focusing into an arbitrary region,” Dokl. Akad. Nauk SSSR,290, No. 6, 1384–1358 (1986).

    Google Scholar 

  92. A. V. Gnatovskii, A. P. Loginov, N. V. Medved, et al., “Formation of laser beams with improved space—angle characteristics,” Kvantovaya Élektron. (Moscow),6, No. 2, 331–336 (1979).

    Google Scholar 

  93. G. A. Askar'yan and M. A. Mukhamadzhanov, “Suppression of the action of small-scale self-focusing by rotation, jitter, or rocking of a beam,” Zh. Tekh. Fiz.,51, No. 9, 1996–1999 (1981).

    Google Scholar 

  94. M. V. Pyatakhin and A. F. Suchkov, “Methods of controlling the small-scale structure and depolarization of radiation in diffraction,” Kvantovaya Élektron. (Moscow),15, No. 2, 288–292 (1988).

    Google Scholar 

  95. M. V. Pyatakhin and A. F. Suchkov, “Diffraction by absorbing apertures,” Bull. Am. Phys. Soc.,32, No. 8, 1643 (1987).

    Google Scholar 

  96. L. N. Zakhar'ev and A. A. Lemanskii, Wave Scattering by “Black” Bodies [in Russian], Sov. Radio, Moscow (1972).

    Google Scholar 

  97. L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media, Pergamon (1959).

  98. V. A. Serebryakov and A. D. Starykov, “Solid-state systems for thermonuclear fusion,” Izv. Akad. Nauk SSSR, Ser. Fiz.,44, No. 10, 2040–2047 (1980).

    Google Scholar 

  99. B. J. Feldman and S. J. Gitomer, “Annular lens soft aperture for high power laser systems,” Appl. Opt.,15, No. 6, 1379–1483 (1976).

    Google Scholar 

  100. V. V. Gel'ner, V. V. Obukhovskii, and V. K. Strizhevskii, “Open cavity with Gaussian diaphragm,” Vestn. Kiev. Univ. Fiz., No. 23, 68–72 (1982).

    Google Scholar 

  101. P. G. Gobbi and G. C. Reoli “Mode analysis of a self-filtering unstable resonator with a Gaussian transmission aperture,” Opt. Commun.,57, No. 5, 355–357 (1986).

    Google Scholar 

Download references

Authors

Additional information

Division of Quantum Radiophysics, Lebedev Physics Institute. Translated from Preprint No. 86 of the Lebedev Physics Institute, Moscow, 1990.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pyatakhin, M.V., Suchkov, A.F. Spatiotemporal characteristics of laser emission. III. Propagation of electromagnetic radiation beam in laser installations with allowance for large-angle diffraction and spatial self-focusing. J Russ Laser Res 12, 1–37 (1991). https://doi.org/10.1007/BF01120617

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01120617

Keywords

Navigation