Skip to main content
Log in

Experimental investigation of radiation-gasdynamic processes that develop under the action of high-power λ=10.6 μm laser pulses on a solid in a gas

  • Published:
Journal of Soviet Laser Research Aims and scope

Abstract

A cycle of experimental investigations was carried out on radiation-gasdynamic processes that evolve when high-power (∿1.5 GW) pulses from an electron-beamcontrolled CO2 laser act on a target in air or in inert gases at pressures 0.1–760 torr and flux densities 5·106 to 5·108 W/cm2. It is shown that at pressures above several torr a laser-radiation absorption wave is produced in the gas surrounding the target and determines the evolution of the interaction. The laser-stimulated-detonation, subsonic, and supersonic radiative regimes of absorption-wave propagation in gases are investigated under conditions of planar one-dimensional geometry of the experiment and at large (up to 20 cm2) area of the irradiated spot.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  1. N. G. Basov, É. M. Belenov, V. A. Danilychev, and A. F. Suchkov, “Pulsed CO2 laser with high gas-mixture pressure,” Kvantovaya Elektron. (Moscow), No. 3, 121–123 (1971).

    Google Scholar 

  2. N. G. Basov, É. M. Belenov, V. A. Danilychev, and A. F. Suchkov, “Electron-beam-controlled condensed CO2 lasers,” Usp. Fiz. Nauk,114, No. 2, 213–247 (1974).

    Google Scholar 

  3. Yu. V. Afanas'ev and O. N. Krokhin, “Gasdynamic theory of the action of laser radiation on condensed substances,” Tr. Fiz. Inst. Akad. Nauk,52, 118–170 (1970).

    Google Scholar 

  4. N. G. Basov, O. N. Krokhin, and G. V. Sklizkov, “Investigation of the dynamics of heating and expansion of a plasma produced when powerful laser radiation is focused on matter,” Tr. Fiz. Inst. Akad. Nauk,52, 171–236 (1970).

    Google Scholar 

  5. S. I. Anisimov, Ya. A. Imas, G. S. Romanov, and D. V. Khodyko, Action of High-Power Radiation on Metals [in Russian], Nauka, Moscow (1970).

    Google Scholar 

  6. J. F. Ready, Effects of High Power Laser Radiation, Academic Press (1971).

  7. P. D. Maker, R. W. Terhune, and C. M. Savage, “Optical third-harmonic generation,” in: Quantum Electronics, P. Grivet at N. Bloembergen (eds.), Vol. III, Columbia Univ. Press, New York (1964).

    Google Scholar 

  8. S. A. Ramsden and P. Savic, “A radiative detonation model for the development of a laser-induced spark in air,” Nature,203, No. 4951, 1217–1219 (1964).

    Google Scholar 

  9. Yu. P. Raizer, “Gas heating by a powerful light pulse,” Zh. Eksp. Teor. Fiz.,48, No. 5, 1508–1519 (1965).

    Google Scholar 

  10. Yu. P. Raizer, Laser-Induced Discharge Phenomena, Consultants Bureau, New York (1977).

    Google Scholar 

  11. A. N. Pirri, R. Schlier, and D. Northam, “Momentum transfer and plasma formation above a surface with a high-power CO2 laser,” Appl. Phys. Lett.,21, No. 3, 79–81, (1972).

    Google Scholar 

  12. A. I. Barchukov, F. V. Bunkin, V. I. Konov, and A. M. Prokhorov, “Low-threshold breakdown of air near a target by CO2-laser radiation and the associated high recoil momentum,” Pis'ma Zh. Eksp. Teor. Fiz.,17, No. 77, 413–416 (1973).

    Google Scholar 

  13. A. I. Barchukov, F. V. Bunkin, V. I. Konov, and A. A. Lyubin, “Investigation of lowthreshold gas breakdown near solid targets by CO2-laser radiation,” Zh. Eksp. Teor. Fiz.,66, No. 3, 965–982 (1974).

    Google Scholar 

  14. V. A. Boiko, V. A. Danilychev, V. D. Zvorykin, et al., “Measurement of the recoil momentum for one-dimensional motion of a plasma produced by an electron-beam-controlled CO2 laser on a solid target,” Pis'ma Zh. Tekh. Fiz.,2, No. 16, 743–747 (1976).

    Google Scholar 

  15. V. A. Boiko, V. A. Danilychev, V. D. Zvorkykin, et al., “Investigation of gasdynamic processes and of the recoil momentum in optical breakdown of air produced near a target surface by an electron-beam-controlled CO2 laser,” Kvantovaya Elektron. (Moscow),3, No. 9, 1955–1961 (1976).

    Google Scholar 

  16. V. A. Boiko, V. A. Danilychev, B. N. Duvanov, et al., “Measurement of gasdynamic pressure produced on a target by CO2-laser radiation,”,ibid.,4, No. 4, 837–843 (1977).

    Google Scholar 

  17. V. A. Boiko, V. A. Danilychev, B. N. Duvanov, et al., “Observation of supersonic radiation waves in gases under the action of CO2-laser radiation,”ibid.,5, No. 1, 216–218 (1978).

    Google Scholar 

  18. V. A. Boiko, V. A. Danilychev, B. I. Duvanov, et al., “Investigation of supersonic radiation waves in gases under the action of CO2-laser radiation,” in: Abstracts, 4th All-Union Conf. on Nonresonant Interaction of Optical Radiation with Matter (Leningrad, March 1978), Leningrad (1978), pp. 87–88.

  19. V. A. Boiko, V. V. Vladimirov, V. A. Danilychev, et al., “Supersonic radiation waves in gases under the action of CO2-laser radiation,” Pis'ma Zh. Tekh. Fiz.,4, No. 22, 1373–1378 (1978).

    Google Scholar 

  20. V. A. Boiko, V. A. Danilychev, B. N. Duvanov, et al., “Investigation of reflection of CO2-laser radiation from targets in air,” Kvantovaya Elektron. (Moscow),6, No. 6, 1323–1326 (1979).

    Google Scholar 

  21. V. A. Danilychev, V. D. Zvorykin, I. V. Kholin, and A. Yu. Chugunov, “Experimental investigation of the emission from a plasma produced upon interaction of pulses of a highpower CO2 laser with targets in air,” in: Abstracts, 4th All-Union Conf. on Dynamics of Radiating Gas (Moscow, March 1980), Moscow (1980), pp. 39–40.

  22. V. A. Danilychev, V. D. Zvorykin, I. V. Kholin, and A. Yu. Chugunov, “Investigation of the dynamics of plasma formation near a target under the action of microsecond CO2-laser pulses,” Kvantovaya Elektron. (Moscow),7, No. 12, 2599–2603 (1980).

    Google Scholar 

  23. V. A. Danilychev, V. D. Zvorykin, I. V. Kholin, and A. Yu. Chugunov, “Investigation of intrinsic radiation of plasma produced in air by laser pulses with λ=10.6 μ,” Fiz. Plazmy,7, No. 2, 350–364 (1981).

    Google Scholar 

  24. V. A. Danilychev, V. D. Zvorykin, I. V. Kholin, and A. Yu. Chugunov, “Detonation and radiation waves in gases supported by 10.6-μm laser pulses,” in: Proc. of the XV Int. Conf. on Phenomena in Ionized Gases, USSR, Contrib. Pap., Minsk, July (1981), Part II, pp. 799–800.

  25. V. D. Zvorykin, “Mechanisms of propagation of superdetonation absorption waves of laser radiation of wavelength 10.6 μm in gases,” Abstracts, 5th All-Union Conf. on Nonresonant Interaction of Optical Radiation with Matter (Leningrad, Dec. 1981), Leningrad (1981), pp. 150–251.

  26. R. W. Ladenburg et al. (eds.), Physical Measurements in Gasdynamics and Combustion, Oxford Univ. Press (1955).

  27. R. A. Graham, F. W. Nielsen, and W. B. Benedick, “Piezoelectric current from shock-loaded quartz—a submicrosecond stress gauge,” J. Appl. Phys.,36, No. 5, 1775–1783 (1965).

    Google Scholar 

  28. A. N. Zaidel', G. V. Ostrovskaya, and Yu. I. Ostrovskii, Spectroscopy Techniques and Practice [in Russian], 2nd ed., Nauka, Moscow (1976).

    Google Scholar 

  29. Ya. V. Zel'dovich and Yu. P. Raizer, Physics of Shock Waves and of High-Temperature Hydrodynamic Phenomena [in Russian], 2nd ed., Nauka, Moscow (1966).

    Google Scholar 

  30. G. G. Vilenskaya and I. V. Nemchinov, “Phenomenon of laser absorption burst and the associated gasdynamic effects,” Dokl. Akad. Nauk SSSR,186, No. 5, 1048–1051 (1969).

    Google Scholar 

  31. I. V. Nemchinov and S. P. Popov, “Screening of surface evaporated by laser radiation in the case of temperature and ionization disequilibrium,” Zh. Prikl. Mekh. Tekh. Fiz., No. 5, 35–45 (1971).

    Google Scholar 

  32. A. P. Golub' and I. V. Nemchinov, “Plasma formation by action of CO2-laser pulse on an aluminum partition,” Kvantovaya Elektron. (Moscow),7, No. 1, 209–211 (1980).

    Google Scholar 

  33. Ya. N. Gnoevoi, I. A. Petrukhin, Yu. E. Pleshanov, and V. A. Sulyaev, “Experimental investigation of the onset of screening in lead or aluminum vapor,” Pis'ma Zh. Eksp. Teor. Fiz.,11, No. 9, 440–443 (1970).

    Google Scholar 

  34. N. N. Kozlova, A. I. Petrukhin, and V. A. Sulyaev, “Experimental investigation of the start of evaporation and the onset of a plasma layer by action of laser radiation on metals in various gases,” Kvantovaya Elektron. (Moscow),2, No. 7, 1390–1394 (1975).

    Google Scholar 

  35. K. Ujihara, “Reflectivity of metals at high temperature,” J. Appl. Phys.,43, No. 5, 2376–2383 (1972).

    Google Scholar 

  36. D. E. Lencioni, “The effect of dust on 10.6-μm laser-induced air breakdown,” Appl. Phys. Lett.,23, No. 1, 12–14 (1973).

    Google Scholar 

  37. C. H. Chan, C. D. Moody, and W. B. McKnight, “Significant loss mechanism in gas breakdown at 10.6 μm,” J. Appl. Phys.,44, No. 3, 1179–1188 (1973).

    Google Scholar 

  38. D. C. Smith and R. T. Brown, “Aerosol-induced air breakdown with CO2-laser radiation,” J. Appl. Phys.,46, No. 3, 1146–1154 (1975).

    Google Scholar 

  39. D. C. Smith, “Gas breakdown initiated by laser radiation interaction with aerosols and solid surfaces,”ibid.,48, No. 6, 2217–2225 (1977).

    Google Scholar 

  40. B. Steverding, “Ignition and detonation waves,”ibid.,45, No. 8, 3507–3511 (1974).

    Google Scholar 

  41. C. T. Walters, R. H. Barnes and R. E. Beverly III, “Initiation of laser-supported-detonation (LSD) waves,”ibid.,49, No. 5, 2937–2949 (1978).

    Google Scholar 

  42. A. V. Bondarenko, V. S. Golubev, E. V. Dan'shchikov, et al., “Laser breakdown of air near a target surface,” Pis'ma Zh. Tekh. Fiz.,5, No. 4, 221–225 (1979).

    Google Scholar 

  43. W. E. Maher, R. B. Hall, and R. R. Johnson, “Experimental study of ignition and propagation of laser-supported detonation waves,” J. Appl. Phys.,45, No.5, 2138–2145 (1974).

    Google Scholar 

  44. E. L. Klosterman and S. R. Byron, “Measurement of subsonic laser absorption wave propagation characteristics at 10.6 μm,”ibid.,45, No. 11, 4751–4759 (1974).

    Google Scholar 

  45. M. C. Fowler and D. C. Smith, “Ignition and maintenance of subsonic plasma waves in atmospheric pressure air by CW CO2-laser radiation and their effect on laser beam propagation,”ibid.,46, No. 1, 138–150 (1975).

    Google Scholar 

  46. V. P. Ageev, A. I. Barchukov, F. V. Bunkin, et al., “Gas breakdown near solid targets by pulsed CO2-laser radiation,” Izv. Vyssh. Uchebn. Zaved., Fiz., No. 11, 34–60 (1977).

    Google Scholar 

  47. A. V. Bessarab, V. M. Romanov, V. A. Samylin, and A. I. Funtikov, “Time of start of surface screening on action of CO2-laser radiation,” Zh. Tekh. Fiz.,48, No. 8, 1751–1753 (1978).

    Google Scholar 

  48. I. K. Kikoin (ed.), Tables of Physical Quantities [in Russian], Atomizdat, Moscow (1976).

    Google Scholar 

  49. J. A. McMordle and P. D. Roberts, “The interaction of pulsed CO2-laser radiation with aluminum,” J. Phys. D: Appl. Phys.,8, 768–781 (1975).

    Google Scholar 

  50. J. F. Ready, “Change of reflectivity of metallic surface during irradiation by CO2 TEA laser pulses,” IEEE J. Quantum. Electron.,12 No. 2, 137–142 (1976).

    Google Scholar 

  51. T. P. Donaldson, M. Hubbard, and I. J. Spalding, “Reflection and scattering from CO2-laser-generated plasmas,” Phys. Rev. Lett.,37, No.20, 1348–1351 (1976).

    Google Scholar 

  52. N. G. Basov, V. A. Boiko, V. A. Danilychev, et al., “Reflection of radiation from the plasma mirror of an electron-beam-controlled CO2 laser,” Kvantovaya Elektron. (Moscow),4, No. 10, 2268–2271 (1977).

    Google Scholar 

  53. N. M. Kuznetsov, Thermodynamic Functions and Shock Adiabats of Air at High Temperatures [in Russian], Mashinostroenie, Moscow (1965).

    Google Scholar 

  54. S. Marcus, J. E. Lowder, and D. L. Mooney, “Large-spot thermal coupling of CO2-laser radiation to metallic surfaces,” J. Appl. Phys.,47, No. 7, 2966–2968 (1976).

    Google Scholar 

  55. R. W. Mitchel, R. W. Conrad, and E. L. Roy, “The role of radiative transfer in pulsed laser plasma-target interactions,” J. Quant. Spectrosc. Radiat. Transfer,20, 519–531 (1978).

    Google Scholar 

  56. J. A. McKay and J. T. Schriempf, “The spatial distribution of heating of aluminum targets by laser-irradiated air plasmas,” Appl. Phys. Lett.,33, No. 10, 877–878 (1978).

    Google Scholar 

  57. J. A. McKay, R. D. Bleach, D. J. Nagel, et al., “Pulsed CO2-laser interaction with aluminum in air: Thermal response and plasma characteristics,” J. Appl. Phys.,50, No. 5, 3231–3240 (1979).

    Google Scholar 

  58. V. P. Ageev, A. I. Barhcukov, F. V. Bunkin, et al., “Heating of metals by CO2-laser radiation pulses,” Kvantovaya Elektron. (Moscow),6, No. 1, 78–85 (1979).

    Google Scholar 

  59. I. V. Nemchinov and T. I. Orlova, “Action of radiation from a laser-heated air plasma on a partition,” Pis'ma Zh. Tekh. Fiz.,3, No. 22, 1172–1175 (1977).

    Google Scholar 

  60. A. N. Pirri, R. G. Root, and P. K. S. Wu, “Plasma energy transfer to metal surfaces irradiated by pulsed lasers,” AIAA J.,16, No. 12, 1296–1304 (1978).

    Google Scholar 

  61. V. I. Bergel'son, T. V. Loseva, and I. V. Nemchinov, “Numerical calculation of the problem of the propagation of a plane subsonic radiation wave in a gas counter to the light flux,” Zh. Prikl. Mekh. Tekh. Fiz., No. 4, 22–34 (1974).

    Google Scholar 

  62. E. A. Kozik, T. V. Loseva, I. V. Nemchinov, and V. V. Novikova, “Subsonic radiation waves propagating from a partition counter to CO2-laser radiation,” Kvantovaya Elektron. (Moscow),5, No. 10, 2138–2147 (1978).

    Google Scholar 

  63. V. I. Bergel'son, T. V. Loseva, I. V. Nemchinov, and T. I. Orlova, “Propagation of supersonic radiation waves,” Fiz. Plazmy,1, No. 6, 912–921 (1975).

    Google Scholar 

  64. I. É. Markovich, I. V. Nemchinov, A. I. Petrukhin, et al., “Superdetonation waves propagating in air counter to a light beam,” Pis'ma Zh. Tekh. Fiz.,3, No. 3, 101–105 (1977).

    Google Scholar 

  65. J. E. Lowder, D. E. Lencioni, T. W. Hilton, and R. J. Hull, “High-energy pulsed CO2-laser-target interaction in air,” J. Appl. Phys.,44, No. 6, 2759–2762 (1973).

    Google Scholar 

  66. S. A. Metz, L. R. Hettche, R. L. Stegman, et al., “Effect of beam intensity on target response to high-intensity pulsed CO2-laser radiation,” J. Appl. Phys.,46, No. 4, 1634–1642 (1975).

    Google Scholar 

  67. A. A. Bakeev, L. A. Vasil'ev, L. M. Nikolashina, N. V. Prokopenko, et al., “Dynamics of development and spectral composition of radiation of a plasma flare produced by action of λ=10.6-μm laser radiation on materials,” Kvantovaya Elektron. (Moscow),2, No. 6, 1278–1281 (1975).

    Google Scholar 

  68. P. Bournot, P. A. Pincosy, G. Inglesakis, et al., “Propagation of a laser-supported detonation wave,” Acta Astronautica,6, 257–267 (1979).

    Google Scholar 

  69. V. S. Golubev, “Propagation of plasma in laser breakdown of gases near a target,” Fiz. Plazmy,5, No. 2, 395–399 (1979).

    Google Scholar 

  70. I. Z. Nemtsev and B. F. Mul'chenko, “Fast ionization wave maintained in xenon by a laser beam,” Fiz. Plazmy,3, No. 5, 1167–1169 (1977).

    Google Scholar 

  71. G. A. Askar'yan and E. M. Moroz, “Pressure in evaporation of matter in a radiation beam,” Zh. Eksp. Teor. Fiz.,43, No. 6, 2319–2320 (1962).

    Google Scholar 

  72. L. R. Hettche, J. T. Schriempf, and R. L. Stegman, “Impulse reaction resulting from the in-air irradiation of aluminum by pulsed CO2 laser,” J. Appl. Phys.,44, No. 9, 4079–4085 (1973).

    Google Scholar 

  73. J. E. Lowder, and L. C. Pettingill, “Measurement of CO2-laser generated impulse and pressure,” Appl. Phys. Lett.,24, No. 4, 204–207 (1974).

    Google Scholar 

  74. R. E. Beverly III and C. T. Walters, “Measurement of CO2-laser-induced shock pressures above and below LSD-wave thresholds,” J. Appl. Phys.,47, No. 8, 3485–3495 (1976).

    Google Scholar 

  75. A. N. Pirri, “Theory for momentum transfer to a surface with a high-power laser,” Phys. Fluids,16, No. 9, 1435–1440 (1973).

    Google Scholar 

  76. P. E. Nielsen, “The role of discrete plasma initiation sites in the high-intensity irradiation of surfaces,” Appl. Phys. Lett.,27, No. 8, 458–459 (1975).

    Google Scholar 

  77. L. I. Sedov, Similarity and Dimensionality Methods in Mechanics [in Russian], 8th ed., Nauka, Moscow (1977).

    Google Scholar 

  78. W. E. Maher and R. B. Hall, “Experimental study of effects from two laser pulses,” J. Appl. Phys.,47, No. 6, 2486–2493 (1976).

    Google Scholar 

  79. V. P. Ageev, A. I. Barchukov, F. V. Bunkin, et al., “Investigation of mechanical action of pulsed CO2-laser radiation on solid targets in a gas medium,” Kvantovaya Elektron. (Moscow),4, No. 2, 310–319 (1977).

    Google Scholar 

  80. J. T. Ready, “Impulse produced by the interaction of CO2 TEA laser pulse,” Appl. Phys. Lett.,25, No. 10, 558–560 (1974).

    Google Scholar 

  81. P. S. P. Wei and R. B. Hall, “Emission spectra of laser-supported detonation waves,” J. Appl. Phys.,44, No. 5, 2311–2314 (1973).

    Google Scholar 

  82. P. S. P. Wei, R. B. Hall, and W. E. Maher, “Study of laser-supported detonation waves by time-resolved spectroscopy,” J. Chem. Phys.,59, No. 7, 3692–3700 (1973).

    Google Scholar 

  83. H. R. Griem, Spectral Line Broadening in Plasmas, Academic Press, New York (1974).

    Google Scholar 

  84. L. M. Biberman and G. É. Norman, “Continuous spectra of atomic gases and of plasma,” Usp. Fiz. Nauk,91, No. 2, 193–246 (1967).

    Google Scholar 

  85. I. V. Avilova, L. M. Biberman, V. S. Vorob'ev, et al., in: Optical Properties of Hot Air [in Russian], L. M. Biberman (ed.), Nauka, Moscow (1970).

    Google Scholar 

  86. V. I. Fisher, “Fast gas-ionization wave in the beam of a high-power laser,” Zh. Eksp. Teor. Fiz.,79, No. 6, 2142–2151 (1980).

    Google Scholar 

  87. V. I. Fisher and V. M. Kharash, “Superdetonation motion of plasma front counter to highpower laser radiation,” Zh. Eksp. Teor. Fiz., No. 3, 740–746 (1982).

    Google Scholar 

Download references

Authors

Additional information

Translated from Trudy Ordena Lenina Fizicheskogo Instituta im. P. N. Lebedeva, Vol. 142, pp. 117–171, 1983.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Danilychev, V.A., Zvorykin, V.D. Experimental investigation of radiation-gasdynamic processes that develop under the action of high-power λ=10.6 μm laser pulses on a solid in a gas. J Russ Laser Res 5, 667–715 (1984). https://doi.org/10.1007/BF01120455

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01120455

Keywords

Navigation