Skip to main content
Log in

Numerical modeling of the local relaxation kinetics of the KrF laser

  • Published:
Journal of Soviet Laser Research Aims and scope

Abstract

A multilevel mathematical model of the local kinetics of a laser medium of initial composition He-Kr-F2 is constructed by analyzing the relaxation mechanisms of a plasma produced when an electron beam enters a dense gas. A working program is written for solving with a BÉSM-6 computer the corresponding system of balance equations for the populations and temperatures. Some results of demonstration computations are cited. Ways and prospects of improving the model are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  1. K. Smith and R. M. Thomson, Computer Modeling of Gas Lasers, Plenum Press, New York (1978).

    Google Scholar 

  2. I. S. Lakoba and S. I. Yakovlenko, “Active media of exciplex lasers (Review),” Kvantovaya Élektron. (Moscow),7, 677–719 (1980).

    Google Scholar 

  3. J. K. Rice, G. C. Tisone, and E. L. Patterson, “Oscillator performance and energy extraction from a KrF laser pumped by a high-intensity relativistic electron beam,” IEEE J.,QE-16, 1315–1326 (1980).

    Google Scholar 

  4. G. L. Oomen and W. J. Whitteman, “A coaxial e-beam excitation system for high-power excimer laser,” Opt. Commun.,32, 461–466 (1980).

    Google Scholar 

  5. C. B. Edwards, F. O'Neil, and J. M. Shaw, “60-nsec e-beam excitation of rare-gas halide lasers,” Appl. Phys. Lett.,30, 617–620 (1980).

    Google Scholar 

  6. V. Yu. Baranov, V. M. Borisov, A. M. Davidovskii, and O. B. Khristoforov, “Use of discharge over a dielectric surface for preionization in excimer lasers,” Kvantovaya Élektron. (Moscow),8, 77–82 (1981).

    Google Scholar 

  7. T. S. Fahlen, “200-W KrF gas transport laser,” IEEE J.,QE-16, 1260–1262 (1980).

    Google Scholar 

  8. M. C. Gower, “KrF laser-induced breakdown of gases,” Opt. Commun.,36, 43–45 (1981).

    Google Scholar 

  9. J. C. Swingle, L. D. Shlitt, W. R. Rapoport, et al., “Efficient narrowband electron beam pumped KrF laser for pulse-compression studies,” J. Appl. Phys.,52, 91–96 (1981).

    Google Scholar 

  10. O. P. Elin and S. I. Yakovlenko, “Feasibility of modulated-electron-beam excited lasers,” Preprint IAÉ-3166, Moscow (1979).

  11. S. I. Yakovlenko and O. P. Yelin, “On the pumping of plasma lasers by a high-frequencymodulated electron beam,” Phys. Lett.A84, 190–192 (1981).

    Google Scholar 

  12. I. M. Belousova, A. V. Dement'ev, Yu. I. Dymshits, et al., “Xe-F laser with high pulse repetition frequency,” Pis'ma Zh. Tekh. Fiz,6, 950–955 (1980).

    Google Scholar 

  13. T. H. Dunning and P. J. Hay, “The covalent and ionic states of rare gas monofluorides,” J. Chem. Phys.,69, 134–149 (1978).

    Google Scholar 

  14. J. G. Eden, R. W. Waynant, S. K. Searles, and R. Burnham, “New quenching rates applicable to the KrF laser,” Appl. Phys. Lett.,32, 733–735 (1978).

    Google Scholar 

  15. J. Tellinghuisen, A. K. Hays, J. M. Hoffman, and G. C. Tisone, “Spectroscopic studies of diatomic noble gas halides. II. Analysis of bound-free emission from XeBr, XeI, and KrF,” J. Chem. Phys.,65, 4473–4482 (1976).

    Google Scholar 

  16. C. H. Bercker, P. Casvecchia, and Y. T. Lee, “Crossed molecular beam studies on the interaction potential for F (2P)+Ne, Ar, Kr (1S),” ibid.,70, 2986–2990 (1979).

    Google Scholar 

  17. J. E. Velazco, J. H. Kolts, and D. W. Setser, “Quenching rate constants for metastable argon, krypton, and xenon atmos by fluorine-containing molecules and branching ratios for XeF* and KrF* formation,” ibid.,65, 3468–3480 (1976).

    Google Scholar 

  18. L. I. Gudzenko and S. I. Yakovlenko, Plasma Lasers [in Russian], Atomizdat, Moscow (1978).

    Google Scholar 

  19. C. de Vreugd, R. W. Wijnaendlts van Resandt, and J. Los, “The well depths of XeF and XeCl from differential scattering measurements,” Chem. Phys. Lett.,65, 93–94 (1979).

    Google Scholar 

  20. I. Kuen and F. Howorka, “Noble gas halide ions: KrCl+, KrF+, ArCl+, ArI+,” J. Chem. Phys.,70, 595–596 (1979).

    Google Scholar 

  21. D. E. Rothe and R. A. Gibson, “Analysis of spark-preionized large volume XeF and KrF discharge lasers,” Opt. Commun.,22, 265–268 (1977).

    Google Scholar 

  22. H. Pummer, K. Hohla, and F. Rebentrost, “Influence of the collisional coupling on the energy extraction from the B, C, and D state in KrF,” Appl. Phys.,20, 129–134 (1979).

    Google Scholar 

  23. J. H. Jacobs, D. W. Trainor, M. Rokni, and J. C. Hsia, “Accessibility of the KrF*(B) state to laser photons,” Appl. Phys. Lett.,37, 522–524 (1980).

    Google Scholar 

  24. R. A. Walters, J. D. Cox, R. T. Shneider, and J. Hagefstration, “Generation, measurement, and utilization of xenon excimer radiation produced by nuclear reaction products,” Trans. Am. Nucl. Soc.,34, 808–810 (1980).

    Google Scholar 

  25. J. G. Eden, R. S. F. Chang, and L. J. Palumbo, “Absorption in the near-ultraviolet wing of the Kr2F* (410 nm) band,” IEEE J.,QE-15, 1146–1156 (1979).

    Google Scholar 

  26. F. K. Tittel, M. Smayling, W. L. Wilson, and G. Marowsky, “Blue laser action by the rare-gas trimer Kr2F,” Appl. Phys. Lett.,37, 862–864 (1980).

    Google Scholar 

  27. N. G. Basov, V. S. Zuev, A. V. Kanaev, et al., “Lasing of an optically pumped triatomic excimer,” Kvantovaya Élektron. (Moscow),7, 2660–2661 (1980).

    Google Scholar 

  28. J. A. Mangano, J. Hsia, J. H. Jacob, and B. N. Srivastava, “Plasma return current discharge,” Appl. Phys. Lett.,33, 487–489 (1978).

    Google Scholar 

  29. W. B. Lacina and B. D. Kohn, “Theoretical analysis of the electrically excited KrF laser,” ibid.,32, 106–108 (1978).

    Google Scholar 

  30. A. A. Zembekov, E. E. Nikitin, U. Havemann, and L. Zulike, “Dynamics of harpoon reactions —the prototypes of chemoionization processes,” in: Plasma Chemistry [in Russian], No. 6, Atomizdat, Moscow (1979), pp. 3–53.

    Google Scholar 

  31. W. J. Witteman and G. L. Oomen, “On the performance of an e-beam pumped KrF laser,” Opt. Commun.,32, 467–472 (1980).

    Google Scholar 

  32. W. L. Morgan and A. Szöke, “Kinetic processes in Ar−Kr−F2 laser mixtures,” Phys. Rev.,A23, 1256–1265 (1981).

    Google Scholar 

  33. M. M. Mkrtchyan and V. G. Platonenko, “Kinetics of gas-discharge XeF excimer laser,” Kvantovaya Élektron. (Moscow),6, 1639–1647 (1979).

    Google Scholar 

  34. M. G. Voitik, “Theoretical investigation of the kinetics of elementary processes in excimer lasers using rare-gas and mercury with halogens,” Candidate's Dissertation, Moscow (1979).

  35. J. W. Wilson, “Nuclear induced XeBr* photolytic laser model,” Appl. Phys. Lett.,37, 695–697 (1980).

    Google Scholar 

  36. L. I. Gudzenko, I. S. Lakoba, G. Yu. Petrushchenko, et al., “Small models of relaxation of a dense inert-gas plasma,” Trudy FIAN,120, 30–43 (1980).

    Google Scholar 

  37. J. K. Rice, A. K. Hays, and J. R. Woodworth, “VUV emissions from mixture of F2 and the noble gases: A molecular F2 laser at 1575 Å,” Appl. Phys. Lett.,31, 31–33 (1977).

    Google Scholar 

  38. R. E. Center and A. Mandl, “Ionization cross sections of F2 and Cl2 by electron impact,” J. Chem. Phys.,57, 4104–4106 (1972).

    Google Scholar 

  39. A. W. Fliflet, V. McCoy, and T. N. Rescigno, “Dissociation of F2 by electron impact excitation of the lowest3IIu electronic state,” Phys. Rev.,A21, 788–794 (1980).

    Google Scholar 

  40. R. J. Hall, “Dissociative attachment and vibrational excitation of F2 by slow electron,” J. Chem. Phys.,68, 1803–1807 (1978).

    Google Scholar 

  41. J. F. Liebman and L. C. Allen, “A salt chemistry of light noble gas compounds,” J. Am. Chem. Soc.,92, 3339–3543 (1970).

    Google Scholar 

  42. B. Liu and H. F. Schaefer, “Krypton monofluoride and its positive ion,” J. Chem. Phys.55, 2369–2374 (1971).

    Google Scholar 

  43. T. N. Rescigno and C. F. Bender, “The stability of the F2-ion: a model of dissociative attachment,” J. Phys.,B9, L329-L332 (1976).

    Google Scholar 

  44. A. S. Dickinson, R. E. Roberts, and R. B. Bernstein, “Ion-atom association reaction in the rare gases,” J. Phys.,B5, 355–365 (1972).

    Google Scholar 

  45. L. Ya. Efremenkova, A. A. Radtsig, and B. M. Smirnov, “Parameters of weakly bound molecular ions,” Opt. Spektrosk.,36, 61–68 (1974).

    Google Scholar 

  46. B. Rosen, Tables de Constantes de Données Numériques, Vol. 17, Pergamon Press (1970), p. 193.

  47. C. Y. Ng, D. J. Trevor, B. H. Mohan, and Y. T. Lee, “Photoionization studies of the Kr2 and Ar2 van der Waals molecules,” J. Chem. Phys.,66, 446–449 (1977).

    Google Scholar 

  48. I.Ya. Fugol', A. G. Belov, E. V. Savchenko, and Yu. B. Poltoratskii, “Emission spectra of pure crystals of inert gases,” Preprint FTINT AN UkrSSR, Kharkov (1974).

  49. D. C. Cartwright and P. J. Hay, “Technical studies of the valence electronic states and the2Πu←X1 +g absorption spectrum of the F2 molecule,” J. Chem. Phys.,70, 3191–3203 (1979).

    Google Scholar 

  50. W. R. Wadt and P. J. Hay, “Electronic states of Ar2F and Kr2F,” ibid.,68, 3850–3963 (1978).

    Google Scholar 

  51. L. I. Gudzenko, I. S. Lakoba, Yu. I. Syts'ko, and S. I. Yakovlenko, “Analysis of the possibility of amplifying VUV radiation in a helium plasma,” Preprint IAÉ-2912, Moscow (1977).

  52. L. I. Gudzenko, I. S. Lakoba, Yu. I. Syts'ko, and S. I. Yakovlenko, “Analysis of the possibilities of VUV lasing on a helium dimer pumped by an electron beam,” Kvantovaya Élektron. (Moscow),6, 701–713 (1979).

    Google Scholar 

  53. L. J. Kieffer, “Low-energy electron-collision cross-section data,” Atom. Data,1, 19–89 (1969).

    Google Scholar 

  54. W. L. Borst, “Excitation of metastable argon and helium atoms by electron impact,” Phys. Rev.,A9, 1195–1200 (1974).

    Google Scholar 

  55. R. Deloche, P. Monchicourt, M. Cheret, and F. Lambert, “High pressure helium afterglow at room temperature,” ibid.13, 1140–1176 (1976).

    Google Scholar 

  56. A. J. Dixon, M. F. A. Harrison, and A. C. H. Smith, “A measurement of the electron impact ionization cross section of helium in metastable states,” J. Phys.,B9, 2617–2631 (1976).

    Google Scholar 

  57. D. Ton-That and M. R. Flannery, “Cross sections for ionization of metastable rare-gas atoms (Ne*, Ar*, Kr*, Xe*) and of metastable N *2 , CO* molecules by electron impact,” Phys. Rev.,A15, 517–526 (1977).

    Google Scholar 

  58. B. M. Smirnov, “Complex ions in gases,” Usp. Fiz. Nauk,121, 231–258 (1977).

    Google Scholar 

  59. Y.-J. Shiu and M. A. Biondi, “Dissociative recombination in Kr: dependence of the total rate coefficient and excited-state production on electron temperature,” Phys. Rev.,A16, 1817–1820 (1977).

    Google Scholar 

  60. T. D. Bonifield, F. H. K. Rambow, G. K. Walters, et al., “Production and decay of the Ou + and 1u states of Kr2 excited by synchrotron radiation,” Chem. Phys. Lett.,69, 290–295 (1980).

    Google Scholar 

  61. L. A. Vainshtein, M. I. Sobel'man, and E. A. Yukov, Cross Sections for Excitation of Atoms and Ions by Electrons [in Russian], Nauka, Moscow (1975).

    Google Scholar 

  62. K. J. McCann, M. R. Flannery, and A. Hazi, “Theoretical cross sections for ionization of metastable excimers Ne *2 and Ar *2 by electron impact,” Appl. Phys. Lett.,34, 543–545 (1979).

    Google Scholar 

  63. T. Oka, K. V. S. Rama Rao, J. L. Redpath, and R. F. Firestone, “Mechanism for decay and spontaneous radiative decay constants of the lowest-lying excited states of Ne2, Ar2, and Kr2,” J. Chem. Phys.,61, 4740–4746 (1974).

    Google Scholar 

  64. C. W. Werner, E. V. George, P. W. Hoff, and C. K. Rhodes, “Radiative and kinetic mechanism in bound-free excimer laser,” IEEE J.,QE-13, 769–783 (1977).

    Google Scholar 

  65. A. W. Johnson and J. B. Gerardo, “Deexcitation rates for excited xenon molecules,” Chem. Phys.,59, 1738–1741 (1973).

    Google Scholar 

  66. L. J. Kieffer, “Low-energy electron collision cross-section data,” At. Data,2, 293–391 (1971).

    Google Scholar 

  67. Yu. K. Gus'kov, K. V. Savvov, and V. A. Slobodyanyuk, “Total cross section for elastic scattering of slow electrons with E=0.025–1.0 eV by He, Ne, Ar, Kr, Xe atoms, measured by the time-of-flight method,” Zh. Tekh. Fiz.,48, 277–284 (1978).

    Google Scholar 

  68. R. E. Kennerly and R. A. Bonham, “Electron-helium absolute total scattering cross sections from 0.5 to 50 eV,” Phys. Rev.,A17, 1844–1854 (1978).

    Google Scholar 

  69. H.-L. Chen, R. E. Center, D. W. Trainor, and W. I. Fyfe, “Dissociative attachment of electron to F2,” Appl. Phys. Lett.,30, 99–101 (1977).

    Google Scholar 

  70. K. J. Nygaard, S. P. Hunter, J. Fletcher, and S. R. Fottyn, “Electron attachment in dilute fluorine-helium mixtures,” ibid.,32, 351–353 (1978).

    Google Scholar 

  71. D. W. Trainor and J. H. Jacob, “Electron dissociative attachment rate constants for F2 and NF3 at 300 and 500°K,” ibid.,35, 920–922 (1979).

    Google Scholar 

  72. G. E. Caledonia, “A survey of the gas-phase negative ion kinetics of inorganic molecules electron attachment reaction,” Chem. Rev.,75, 333–351 (1975).

    Google Scholar 

  73. B. M. Smirnov, Ions and Excited Atmos in a Plasma [in Russian], Atomizdat, Moscow (1974), p. 221.

    Google Scholar 

  74. W. L. Nighan, “Influence of electron-F2 collisions in rare gas-halide laser discharges,” Appl. Phys. Lett.,32, 297–300 (1978).

    Google Scholar 

  75. B. M. Smirnov, Atomic Collisions and Elementary Processes in Plasma [in Russian], Atomizdat, Moscow (1968), p. 151.

    Google Scholar 

  76. I. P. Guzov, S. B. Kormer, L. V. L'vov, et al., “Measurement of the recombination constant of atomic fluorine,” Kvantovaya Élektron. (Moscow),3, 2043–2047 (1976).

    Google Scholar 

  77. C. J. Ultee, “The homogeneous recombination rate constant of F atom at room temperature,” Chem. Phys. Lett.,46, 366–367 (1977).

    Google Scholar 

  78. A. W. Johnson and J. K. Rice, “Formation of xenon dimers in electron-beam-excited xenon and xenon-noble gas mixtures,” Bull. Am. Phys. Soc.,21, 169–170 (1976).

    Google Scholar 

  79. D. I. Virin, R. V. Dzhagatspanyan, V. V. Karchevtsev, et al., Ion-Molecular Reactions in Gases [in Russian], Nauka (1979), p. 86.

  80. C. B. Collins and W. F. Lee, “Measurement of the rate coefficients for the bimolecular deexcitation reactions of He (23S) with selected atomic and molecular species,” J. Chem. Phys.,70, 1275–1285 (1979).

    Google Scholar 

  81. F. W. Lee, C. B. Collins, L. C. Pitchford and R. Deloche, “Pressure dependence of the reactions of He2(3∑ metastable molecules with Ar,” ibid.,68, 3025–3027 (1978).

    Google Scholar 

  82. R. E. Huffman, Y. Tanaka, and J. C. Larrabee, “Absorption coefficients of krypton in the 600- to 886-Å wavelength region,” Appl. Opt.,2, 947–954 (1963).

    Google Scholar 

  83. L. O. Hocker, “High-resolution study of the helium-fluorine laser,” J. Opt. Soc. Am.,68, 262–265 (1978).

    Google Scholar 

  84. C. B. Collins, F. W. Lee, and J. M. Carroll, “An atomic-fluorine laser pumped by charge transfer from He2 + at high pressures,” Appl. Phys. Lett.,37, 857–859 (1980).

    Google Scholar 

  85. J. H. Jacob, M. Rokni, J. A. Mangano and R. Brochu, “Formation and quenching processes in e-beam-pumped Kr/F2 mixture,” ibid.,32, 109–111 (1978).

    Google Scholar 

  86. M. R. Flannery and T. P. Yang, “Ionic recombination of rare-gas molecular ions X+ ions with F in a dense gas X,” ibid.,32, 327–328 (1978).

    Google Scholar 

  87. M. R. Flannery and T. P. Yang, “Ionic recombination of rare-gas molecular ions X +2 with F in a dense gas X,” ibid.,32, 357–358 (1978).

    Google Scholar 

  88. M. R. Flannery and T. P. Yang, “Ionic recombination of Kr+ and Kr2 + with F in a dense buffer rare gas,” ibid.,33, 574–576 (1978).

    Google Scholar 

  89. I. S. Lakoba, E. D. Suchkova, and Yu. I. Syts'ko, “Calculation of the coefficients of ion-ion recombination with allowance for the temperature dependence,” Preprint FIAN, No. 8, Moscow (1981).

  90. G. P. Quigley and W. M. Hughes, Lifetime and quenching rate constants for Kr2F* and Kr *2 ,” Appl. Phys. Lett.,32, 649–651 (1978).

    Google Scholar 

  91. J. A. Mangano, J. H. Jacob, M. Rokni, and A. Hawryluk, “Three-body quenching of KrF by Ar,” ibid.,31, 26–28 (1977).

    Google Scholar 

  92. V. H. Shui, “Calculation of recombination rate constants for KrF*+R+R→RKrF*+R (R=Ar, Kr),” ibid.,31, 50–51 (1977).

    Google Scholar 

  93. V. H. Shui, “Temperature dependence of recombination rate constants for KrF*+R+R→R KrF*+R (R=Kr, Ar),” ibid.,34, 203–204 (1979).

    Google Scholar 

  94. G. P. Quigley and W. M. Hughes, “The radiative lifetime and quenching of KrF,” ibid.,32, 627–629 (1978).

    Google Scholar 

  95. A. U. Hazi, T. N. Rescigno, and A. E. Orel, “Theoretical study of the deexcitation of KrF and XeF by low-energy electrons,” ibid.,35, 477–479 (1979).

    Google Scholar 

  96. R. F. Stebbings, F. B. Dunning, F. K. Tittel, and R. D. Rundel, “Photoionization of helium metastable atoms near threshold,” Phys. Rev. Lett.,30, 815–817 (1973).

    Google Scholar 

  97. K. J. McCann and M. R. Flannery, “Photoionization of metastable rare-gas atoms (He*→Xe*),” Appl. Phys. Lett.,31, 599–601 (1977).

    Google Scholar 

  98. T. W. Hartquist, “Photoionization cross sections of excited noble-gas atoms and dimers,” J. Phys.B11, 2101–2106 (1978).

    Google Scholar 

  99. H. A. Hyman, “Photoionization cross sections for excited states of argon and krypton,” Appl. Phys. Lett.,31, 14–15 (1977).

    Google Scholar 

  100. T. N. Rescigno, A. U. Hazi, and A. E. Orel, “Calculation of the photoionization cross section of the1 +u excimer state of Ar2,” J. Chem. Phys.,68, 5283–5284 (1978).

    Google Scholar 

  101. P. I. Bresler and G. A. Shtilerman, “Absorption coefficients of chlorine and fluorine in the 220–470-nm region,” Zh. Prikl. Spektrosk.,14, 728–731 (1971).

    Google Scholar 

  102. T. N. Rescigno, C. F. Bender, and B. V. McCoy, “Study of the photodetachment cross section of F,” Phys. Rev.A17, 645–649 (1978).

    Google Scholar 

  103. W. R. Wadt, “The electronic states of Ar +2 , Kr +2 , Xe +2 . I. Potential curves with and without spin-orbit coupling,” J. Chem. Phys.,68, 402–404 (1978).

    Google Scholar 

  104. J. B. West and W. H. Long, “Absorption processes and molecular ion kinetics in e-beam excited rare gas plasmas,” Bull. Am. Phys. Soc.,23, 135 (1978).

    Google Scholar 

  105. R. Johnson, A. Chen, and M. A. Biondi, “Three-body association reactions of He+, Ne+, and Ar+ ions in their parent gases from 78 to 300°K,” J. Chem. Phys.,73, 1717–1720 (1980).

    Google Scholar 

  106. M. Grössl, M. Langenwalter, M. Helm, and T. D. Märk, “Molecular ion formation in decaying plasmas produced in pure argon and krypton,” ibid. J. Chem. Phys.,74, 1728–1735.

  107. W. Wieme and J. Lenaerts, “Excimer formation in argon, krypton, and xenon discharge afterglow between 200 and 400°K,” ibid.,74, 483–493 (1981).

    Google Scholar 

  108. S. Takao, M. Kogoma, T. Oka, et al., “Optical absorption spectra and kinetic behavior of helium excited idatomic molecule (a 3 +u ),” ibid.,73, 148–155 (1980).

    Google Scholar 

  109. W. Lindinger, A. L. Schmeltekopf, and P. C. Fehsenfeld, “Temperature dependence of deexcitation rate constants of He (23S) by Ne, Ar, Xe, H2, N2, O2 NH3 and CO2,” ibid.,61, 2890–2895 (1974).

    Google Scholar 

  110. J. W. Parker, L. W. Anderson, W. A. Fitzsimons, and C. C. Lin, “Collisional quenching of He2 molecules in the3 +u level by impurity gases,” ibid.,75, 1804–1809 (1981).

    Google Scholar 

  111. S. Trajmar, S. K. Srivastava, H., Tanaka, et al., “Excitation cross section for krypton by electron in the 15-100-eV impact-energy range,” Phys. Rev.,A23, 2167–2177 (1981).

    Google Scholar 

  112. L. T. Specht, S. A. Lawton, and T. A. de Temple, “Electron ionization and excitation coefficients for argon, krypton and xenon in the low E/N region,” J. Appl. Phys.,51, 166–170 (1980).

    Google Scholar 

  113. D. C. Lorentz, “The physics of electron beam excited rare gases at high densities,” Physica (Utrecht),C82, 19–26 (1976).

    Google Scholar 

  114. D. W. Trainor and J. H. Jacob, “Electron quenching of KrF* and ArF*,” Appl. Phys. Lett.,37, 675–677 (1980).

    Google Scholar 

  115. N. R. Flannery and T. P. Yang, “Three-body recombination of rare gas atomic ions X+ with F in a low-density gas X,” J. Chem. Phys.,73, 3239–3245 (1980).

    Google Scholar 

  116. J. N. Bardsley and J. M. Wadehra, “Monte Carlo simulation of three-body ion-ion recombination,” Chem. Phys. Lett.,72, 477–480 (1980).

    Google Scholar 

  117. W. L. Morgan, B. L. Whitten, and J. N. Bardsley, “Plasma shielding effects on ionic recombination,” Phys. Rev. Lett.,45, 2021–2024 (1980).

    Google Scholar 

  118. V. H. Shui and C. Duzy, “Theoretical study of formation rates of rare-gas halide trimers,” Appl. Phys. Lett.,36, 135–136 (1980).

    Google Scholar 

  119. T. N. Moseley, R. P. Saxon, B. A. Huber, et al., “Photofragment spectroscopy and potential curves of Ar2 +,” J. Chem. Phys.,67, 1659–1668 (1977).

    Google Scholar 

  120. W. R. Wadt, D. C. Cartwright, and J. C. Cohen, “Theoretical absorption spectra for Ne2 +, Ar2 +, Kr2 + and Xe2 + in the near ultraviolet,” Appl. Phys. Lett.,31, 672–674 (1977).

    Google Scholar 

  121. A. E. Orel, T. N. Rescigno, B. V. McKoy and P. W. Langhoff, “Photoexcitation and ionization in molecular fluorine: Stieltjes-Tchebycheff calculations in the static-exchange approximation,” J. Chem. Phys.,72, 1265–1275 (1980).

    Google Scholar 

  122. C. P. de Vries and H. J. Oskam, “Four-body conversion of atomic helium ions,” Phys. Rev.,A22, 1429–1435 (1980).

    Google Scholar 

  123. D. W. Trainor, J. H. Jacob and M. Rokni, “Electron and heavy particle temperature dependent quenching rate constants of XeF*,” J. Chem. Phys.,71, 3646–3651 (1980).

    Google Scholar 

  124. A. U. Hazi, A. E. Orel, and A. E. Rescigno, “Ab initio study of dissociative attachment of low-energy electrons to F2,” Phys. Rev. Lett.,46, 918–922 (1981).

    Google Scholar 

  125. A. Lifshitz, “Correlation of vibrational deexcitation rate constants (ko→1) of diatomic molecules,” J. Chem. Phys.,61, 2478–2479 (1974).

    Google Scholar 

  126. M. Shimauchi, “Effect of foreign gases on KrF laser spectra,” Jpn. J. Appl. Phys.,20, L473-L476 (1984).

    Google Scholar 

Download references

Authors

Additional information

Translated from Trudy Ordena Lenina Fizicheskogo Instituta im. P. N. Lebedeva AN SSSR, Vol. 145, pp. 131–159, 1984.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lakova, I.S., Syts'ko, Y.I. & Yakubtseva, E.D. Numerical modeling of the local relaxation kinetics of the KrF laser. J Russ Laser Res 7, 535–561 (1986). https://doi.org/10.1007/BF01120400

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01120400

Keywords

Navigation