Skip to main content
Log in

Use of magnetostriction effect to stabilize laser frequency

  • Published:
Journal of Soviet Laser Research Aims and scope

Abstract

The use of magnetostriction to compensate for the thermal changes of the lasercavity length in automatic frequency control systems is considered. Magnetostriction ensures a wide dynamic range of cavity-length compensation, and a transfer coefficient that is 102–103 times larger.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literature Cited

  1. W. R. Bennet, Jr., “Hole burning effects in He−Ne optical maser,” Phys. Rev.,126, No. 2, 580–591 (1962).

    Google Scholar 

  2. R. M. Bozorth, Ferromagnetism, Van Nostrand, New York (1951).

    Google Scholar 

  3. S. N. Bagaev, A. K. Dmitriev, A. S. Dychkov, and V. P. Chebotaev, “Investigation of nonlinear-resonance shifts in methane at 3.39-μm wavelength,” Zh. Eksp. Teor. Fiz.,79, No. 4, 1160–1173 (1980).

    Google Scholar 

  4. S. N. Bagaev, L. S. Vasilenko, V. G. Gol'dort, A. K. Dmitriev, and A. S. Dychkov, “He−Ne laser on λ=3.39 μm with a 7-Hz emission line width,” Kvantovaya Elektron. (Moscow),4, No. 5, 1163–1166 (1977).

    Google Scholar 

  5. V. G. Gol'dort and A. E. Om, “Electronic block for laser-frequency stabilization,” Prib. Tekh. Eksp., No. 3, 190–193 (1980).

    Google Scholar 

Download references

Authors

Additional information

Translated from Lazernye Sistemy, pp. 109–111, 1982.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vasilenko, L.S. Use of magnetostriction effect to stabilize laser frequency. J Russ Laser Res 7, 389–390 (1986). https://doi.org/10.1007/BF01120153

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01120153

Keywords

Navigation