Skip to main content
Log in

Tunable CW CO2 lasers with waveguide cavity

  • Published:
Journal of Soviet Laser Research Aims and scope

Abstract

A laser that is tunable up to 1.6 GHz is described. A cavity with two selectors is described, capable of tuning the emission frequency in a band wider than the intermode distance. The gain in the laser active medium, including in CO2 isotopes, is measured. Lasers with such parameters can be used in spectroscopy, photochemistry, and optical communication and ranging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  1. R. L. Abrams, “Gigahertz tunable waveguide CO2 laser,” Appl. Phys. Lett.,25, No. 5, 304–306 (1974).

    Google Scholar 

  2. J. J. Degnan, “Phenomenological approach to the design of highly tunable pressurebroadened gas lasers,” J. Appl. Phys.,45, No. 1, 257–262 (1974).

    Google Scholar 

  3. S. C. Cohen, “Waveguide CO2 laser gain: dependence on gas kinetic and discharge properties,” IEEE J. Quantum Electron.,QE-12, No. 4, 237–244 (1976).

    Google Scholar 

  4. V. G. Doronin and V. I. Novikov, “Calculation of the characteristics of CO2 isotopemixture laser,” Zh. Prikl. Spektrosk.,28, No. 1, 50–56 (1978).

    Google Scholar 

  5. R. L. Abrams and W. B. Bridges, “Characteristics of sealed-off waveguide CO2 lasers,” IEEE J. Quantum Electron.,QE-9, No. 9, 940–946 (1973).

    Google Scholar 

  6. A. S. Provorov and V. P. Chebotaev, “Tunable-frequency high-pressure CO2 lasers operating in the cw regime,” in: Gas Lasers [in Russian], Nauka, Novosibirsk (1977), pp. 174–205.

    Google Scholar 

  7. J. J. Degnan, “The waveguide laser: a review,” Appl. Phys.,11, No. 1, 1–33 (1976).

    Google Scholar 

  8. S. A. Gonchukov, S. T. Kornilov, and E. D. Protsenko, “Tunable-frequency waveguide CO2 lasers,” Zh. Tekh. Fiz.,48, No. 9, 1903–1907 (1979).

    Google Scholar 

  9. D. E. Evans, S. L. Prunty, and M. C. Sexton, “A boron nitride cw carbon dioxide waveguide laser for optically pumping heavy water,” Infrared Phys.,20, No. 1, 21–27.

  10. A. S. Provorov and V. P. Chebotaev, “CW lasing in CO2−N2−He mixture at atmospheric pressure,” Dokl. Akad. Nauk SSSR,208, No. 2, 318–320 (1973).

    Google Scholar 

  11. I. M. Beterov, A. S. Provorov, and V. P. Chebotaev, “CW high-pressure carbon dioxide laser with a tuning range 800 MHz,” Kvantovaya Elektron. (Moscow),2, No. 2, 437–440 (1975).

    Google Scholar 

  12. A. van Lerbergher, S. Avriller, and C. J. Borde, “High stability CW waveguide CO2 laser for high-resolution saturation spectroscopy,” IEEE Quantum Electron.,QE-14, No. 7, 481–486 (1978).

    Google Scholar 

  13. I. M. Beterov, V. P. Chebotayev, and A. S. Provorov, “CW high-pressure tunable CO2 laser using a mixture of CO2 isotopes,” ibid.QE-10, No. 2, 245–247 (1974).

    Google Scholar 

  14. A. L. Golger and V. S. Letokhov, “Gain in mixture of isotopic CO2 molecules pumped by a CO2 laser,” Kvantovaya Elektron. (Moscow),2, No. 7, 1508–1518 (1975).

    Google Scholar 

  15. E. A. J. Marcatilli and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long-distance optical transmission and lasers,” Bell Syst. Tech. J.,43, No. 4, Part 2, 1783–1809 (1964).

    Google Scholar 

  16. H. Shirahata and T. Fujioka, “Wall depletion effect of population at upper laser level on optical gain in CO2−He waveguide lasers,” J. Appl. Phys.,47, No. 6, 2452–2458 (1976).

    Google Scholar 

  17. W. R. Leeb, “Tunability characteristics of waveguide CO2 lasers with internal etalons,” Appl. Opt.,14, No. 7, 1706–1709 (1975).

    Google Scholar 

  18. A. A. Kovalev, A. S. Provorov, and A. V. Shishaev, “Selection of longitudinal modes of high-pressure CO2 laser operating in the cw regime,” Kvantovaya Elektron. (Moscow),2, No. 1, 143–145 (1975).

    Google Scholar 

  19. Yu. V. Troitskii, Single-Frequency Generation in Gas Lasers [in Russian], Nauka, Novosibirsk (1977), pp. 29–36, 72–89.

    Google Scholar 

  20. F. herlemont, W. Lyszyk, and J. Lemaire, “Infrared spectroscopy of OCS, SO2, O3 with a CO2 waveguide laser,” J. Mol. Spectrosc.,77, No. 1, 69–75 (1979).

    Google Scholar 

  21. R. T. Menzies, “Ozone spectroscopy with a CO2 waveguide laser,” Appl. Opt.,15, No. 11, 2597–2599 (1976).

    Google Scholar 

  22. I. M. Beterov, V. P. Chebotayev, and A. S. Provorov, “High-precision spectroscopy of SF6 with cw high-pressure tunable CO2 laser,” Opt. Commun.,7, No. 4, 410–411 (1973).

    Google Scholar 

  23. M. S. Shumate, R. T. Menzies, W. P. Grant, and D. S. McDougal, “Laser absorption spectrometers: remote measurement of tropospheric ozone,” Appl. Opt.,20, No. 4, 545–552 (1981).

    Google Scholar 

  24. E. N. Bazarov, G. A. Gerasimov, V. P. Gubin, et al., “Stabilization of the frequency of a high-presusre CO2 waveguide laser against the resonances of saturated absorption of the192OsO4 molecule,” Kvantovaya Elektron. (Moscow),7, No. 12, 2646–2649 (1980).

    Google Scholar 

  25. J. H. McElroy, N. McAvoy, E. H. Johnson, et al., “CO2 laser communication system for near-earth space applications,” Proc. IEEE,65, No. 2, 221–251 (1977).

    Google Scholar 

  26. “At Ecosa: heterodyne CO2 rangefinders and radars,’ Laser Focus, No. 12, 12–16 (1980).

Download references

Authors

Additional information

Translated from Lazernye Sistemy, pp. 92–101, 1982.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bakarev, A.E., Kovalev, A.A. & Provorov, A.S. Tunable CW CO2 lasers with waveguide cavity. J Russ Laser Res 7, 379–384 (1986). https://doi.org/10.1007/BF01120151

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01120151

Keywords

Navigation