Skip to main content
Log in

Generation of picosecond pulses in solid-state lasers using new active media

  • Published:
Journal of Soviet Laser Research Aims and scope

Abstract

Results are reported of investigations aimed at generating nanosecond radiation pulses in solid-state lasers using new active media having broad gain lines. Passive mode locking is accomplished for the first time in a BeLa:Nd3+ laser at a wavelength 1.354 μm, and in a YAG:Nd3+ laser on a 1.32−μm transition. The free lasing and mode-locking regimes were investigated in an alexandrite (BeAl2O4:Cr3+) laser in the 0.72–0.78−μm range and in a synchronously pumped laser on F 2- centers in LiF in the 1.12–1.24−μm region. The features of nonlinear perception of IR radiation by the eye, using a developed picosecond laser on F2 centers, are investigated for the first time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  1. S. Shapiro (ed.), Ultrashort Light Pulses [in Russian], Mir, Moscow (1981), p. 170.

    Google Scholar 

  2. R. L. Fork, B. I. Greene, and C. V. Shank, “Generation of optical pulses shorter than 0.1 psec by colliding pulse mode locking,” Appl. Phys. Lett.,38, No. 9, 671–672 (1981).

    Google Scholar 

  3. M. A. Kudinova, Yu. L. Slonimskii, and A. I. Tolmacheva, “Pyrolo-4-pentacarbocyamines,” Khim. Geterotsikl. Soedin., No. 1, 117 (1981).

    Google Scholar 

  4. S. P. Batashev, M. G. Gal'pern, V. A. Katulin, et al., “Study of the characteristics of new compounds for passive Q switches of iodine lasers,” Kvantovaya Elektron. (Moscow),6, No. 12, 2652–2653 (1979).

    Google Scholar 

  5. V. N. Lisitsyn, E. V. Pestryakov, V. I. Trunov, and Yu. L. Gusev, “Generation of picosecond pulses on F2 color centers in the 1.1–1.25-μm range,” Pis'ma Zh. Tekh. Fiz.,7, No. 7, 396–399 (1981).

    Google Scholar 

  6. E. G. Lariontsev and V. N. Serkin, “Optimum conditions for the generation of ultrashort light pulses,” ibid.,4, No. 11, 650–653 (1978).

    Google Scholar 

  7. H. P. Jenssen, R. F. Begley, R. Webb, and R. C. Morris, “Spectroscopic properties and laser generation in Nd3+:La2Be2O5,” J. Appl. Phys.,47, No. 4, 1496–1500 (1976).

    Google Scholar 

  8. L. S. Goldberg and J. N. Bradford, “Passive mode-locking and picosecond pulse generation in Nd:lanthanum beryllate,” Appl. Phys. Lett.,29, No. 9, 585–588 (1976).

    Google Scholar 

  9. Lee W. Smith and J. H. Bechtel, “Laser-induced breakdown and nonlinear refractive index measurements in phosphate glasses, lanthanum beryllate, and Al2O3,” ibid.,28, No. 10, 606–607 (1976).

    Google Scholar 

  10. J. C. Walling, O. G. Peterson, H. P. Jenssen, R. C. Morris, and E. W. O'Dell, “Tunable alexandrite lasers,” IEEE J. Quantum Electron.,QE-16, No. 12, 1302–1314 (1980).

    Google Scholar 

  11. B. K. Sevast'yanov, Yu. L. Remigailo, V. P. Orekhova, et al., “Spectroscopic and lasing characteristics of the alexandrite (BeAl2O4:Cr3+) laser” Dokl. Akad. Nauk SSSR,256, No. 2, 373–376 (1981).

    Google Scholar 

  12. A. V. Milenkevich, V. A. Savva, and A. M. Samson, “Dynamics of evolution and self-stabilization of the characteristics of ultrashort laser pulses in mode-self-locking regime,” Zh. Prikl. Spektrosk.,25, No. 4, 618–621 (1976).

    Google Scholar 

  13. G. R. Fleming and G. S. Beddard, “CW mode-locked, dye lasers for ultrafast spectroscopic studies,” in: Optics and Laser Technology (1978), p. 257.

  14. R. Fisher and L. A. Kulevskii, “Optical parametric light oscillators (review),” Kvanktovaya Elektron. (Moscow),4, No. 2, 245–289 (1977).

    Google Scholar 

  15. L. F. Mollenauer and D. M. Bloom, “Color-center laser generates picosecond pulses and several watts cw over the 1.24–1.45 μm range,” Opt. Lett.,4, No. 8, 247–249 (1981).

    Google Scholar 

  16. I. Isganitis, A. Sceats, and K. German, “CW picosecond pulses on FA(II) centers laser in KCl:Li tunable over the 2.5–2.8-μm range,” ibid.,5, No. 1, 7–9 (1980).

    Google Scholar 

  17. B. Bareika, G. Dikchyus, V. F. Kamalov, et al., “Picosecond generation of a mode-lock-pumped laser on F2 + dye centers under picosecond irradiation,” Pis'ma Zh. Tekh. Fiz.,6, No. 11, 697–700.

  18. D. J. Bradley, “Generation and measurement of frequency-tunable picosecond pulses from dye lasers,” Opto-Electron.,6, No. 1, 25–42 (1974).

    Google Scholar 

  19. T. Basiev, N. Vorob'ev, S. Mirov, et al., “Investigation of picosecond lasing on F2 + color centers in a crystal with tunable frequency,” Pis'ma Zh. Eksp. Teor. Fiz.,31, No. 5, 316–320 (1980).

    Google Scholar 

  20. D. M. Kim, J. Kuhl, R. Lambrich, and D. von Linde, “Characteristics of picosecond pulses generated from synchronously pumped CW dye laser system,” Opt. Commun.,27, No. 1, 123–126 (1978).

    Google Scholar 

  21. L. S. Vasilenko, V. P. Chebotaev, and Yu. V. Troitskii, “Visual observation of infrared radiation of a laser,” Zh. Eksp. Teor. Fiz.,48, No. 3, 777–778 (1965).

    Google Scholar 

  22. V. G. Dmitriev, V. N. Emel'yanov, M. A. Kashintsev, et al., “Nonlinear perception of IR radiation in the 800–1355-nm band by the human eye,” Kvantovaya Elektron. (Moscow),6, No. 4, 803–810 (1979).

    Google Scholar 

  23. S. Fine and W. P. Hansen, “Optical second harmonic generation in biological systems,” Appl. Opt.,10, No. 10, 2350–2353 (1971).

    Google Scholar 

  24. R. M. Evans, An Introduction to Color, Wiley, New York (1948).

    Google Scholar 

  25. T. N. Smirnov and M. T. Shpak, “Lasers based on complex organic compounds and their use,” Abstracts, 3rd All-Union Conf., Uzhgorod, 10–12 Sept., 1980, Minsk (1980), p. 103.

Download references

Authors

Additional information

Translated from Lazernye Sistemy, pp. 67–86, 1982.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lisitsyn, V.N., Matrosov, V.N., Pestryakov, E.V. et al. Generation of picosecond pulses in solid-state lasers using new active media. J Russ Laser Res 7, 364–375 (1986). https://doi.org/10.1007/BF01120149

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01120149

Keywords

Navigation