Skip to main content
Log in

Population processes in high-pressure inert-gas-mixture lasers

  • Published:
Journal of Soviet Laser Research Aims and scope

Abstract

Working-level-population processes are analyzed on the basis of detailed investigations of the amplitude-time structure of the laser and spontaneous emission following a pulsed electric discharge in the mixtures He + R (R = Ar, Kr, Xe), Ar + Xe. Account is taken in the analysis of excitation by electrons (direct and stepwise) and of population as a result of relaxation processes (collisions of second kind with electrons; radiative cascades, recombination processes; collisions with the atoms of the working and buffer gases; excitation transfer from helium molecules). It is concluded that under optimum efficiency conditions inversion is produced in the lasers considered as a result of direct electron collision with the working atoms (Ar, Kr, Xe), which are in the ground state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  1. Tables of Physical Quantities [in Russian], Atomizdat, Moscow (1976).

  2. A. A. Isaev and G. G. Petrash, “Investigation of pulsed atomic-transition gas lasers”, Tr. FIAN SSSR,81, 1–87 (1975).

    Google Scholar 

  3. G. J. Linford, “High-gain neutral laser lines in pulsed noble-gas discharges”, IEEE J. Quantum Electron.,QE-8, No. 6, 477–482 (1972).

    Google Scholar 

  4. J. W. McConkey and F. G. Donaldson, “Excitation of the resonance lines of Ar by electrons”, Can. J. Phys.,51, No. 9, 914–921 (1973).

    Google Scholar 

  5. I. P. Zapesochnyi and P. V. Fel'tsan, “Cross sections for excitation of argon, krypton, and xenon levels”, Opt. Spektrosk.,20, No. 3, 521–522 (1966).

    Google Scholar 

  6. W. Bennett and O. Heavens, Gas Lasers. Solid-State Lasers [Russian translation], Mir, Moscow (1964).

    Google Scholar 

  7. V. F. Moskalenko, E. P. Ostpachenko, and V. A. Chernikov, “Mechanism of pulsed lasing in an He−Xe mixture”, Opt. Spektrosk.,33, No. 2, 308–313 (1972).

    Google Scholar 

  8. P. L. Chapovsky, V. N. Lisitsyn, and A. R. Sorokin, “High-pressure gas lasers on ArI, XeI, and KrI transitions”, Opt. Commun.16, No. 1, 33–36 (1976).

    Google Scholar 

  9. A. R. Sorokin, “Energy characteristics of TEA ArI, KrI, and XeI lasers”, Zh. Tekh. Fiz.,49, No. 8, 1673–1677 (1979).

    Google Scholar 

  10. J. B. Shumaker and C. H. Popenoe, “Transition probabilities of ArI 4s-4p array”, J. Opt. Soc. Am.,57, No. 1, 8–10 (1967).

    Google Scholar 

  11. W. L. Faust and R. A. McFarlane, “Line strengths for noble-gas laser transitions; calculations of gain/inversion at various wavelengths”, J. Appl. Phys.,35, No. 7, 2010–2015 (1964).

    Google Scholar 

  12. R. A. Ohlson, D. Grosjean, W. Sarka, Jr., and A. Garscadden, “Closed-cycle electric-discharge inert-gas laser for scientific research”, Rev. Sci. Instrum.,44, No. 6, 677–683 (1976).

    Google Scholar 

  13. R. Shuker, A. Szoke, E. Zamir, and Y. Bimor, “Energy transfer in noble-gas mixtures: Penning ionization in He/Xe”, Phys. Rev.,A11, No. 4, 1187–1192 (1975).

    Google Scholar 

  14. R. Targ and M. W. Sasnett, “Xenon-helium laser at high pressure and high repetition rate”, Appl. Phys. Lett.,19, No. 12, 537–539 (1971).

    Google Scholar 

  15. T. S. Falen and R. Targ, “High-average-power xenon laser”, IEEE J. Quantum Electron.,QE-9, No. 6, 609 (1973).

    Google Scholar 

  16. S. A. Lawton, J. B. Richards, L. A. Newman, and T. A. De Temple, “The high-pressure neutral infrared xenon laser”, J. Appl. Phys.,50, No. 6, 3888–3898 (1979).

    Google Scholar 

  17. V. N. Lisitsyn and A. R. Sorokin, “Electric-discharge Ar−Xe high-pressure laser on IR transitions of xenon”, Pis'ma Zh. Tekh. Fiz.,5, No. 14, 876–879 (1979).

    Google Scholar 

  18. V. N. Lisitsyn and A. R. Sorokin, “Mechanism of pulsed generation of electric-discharge Ar−Xe high-pressure laser”, Kvantovaya Elektron. (Moscow),8, No. 11, 2425–2432 (1981).

    Google Scholar 

  19. P. L. Chapovskii, “Investigation of pulsed lasers operating on transitions of argon and the nitrogen molecule”, Candidate's Dissertation (01.04.0.5), ITF Sib. Otd. Akad. Nauk SSSR, Novosibirsk (1978).

    Google Scholar 

  20. T. D. Nvuyen and N. Sadeghi, “Rate coefficients for collisional population transfer between 3p54p argon levels at 300°K”, Phys. Rev.,A18, No. 4, 1388–1395 (1978).

    Google Scholar 

  21. V. Yu. Baranov, V. M. Barisov, F. I. Vysikailo, et al, “Energy balance and excitation rates of individual levels in F2:Xe:He mixtures, B. I., Moscow (1979) (Preprint No. 3080, IAÉ).

  22. C. B. Collins, A. J. Cunningham, S. M. Curry, et al., “Stimulated emission from charge-transfer reactions in the afterglow of an e-beam discharge into high-pressure helium-nitrogen mixtures”, Appl. Phys. Lett.,24, No. 10, 477–478 (1974).

    Google Scholar 

  23. R. E. Olson, “Semiempirical calculations of the He* (23S and 21S)+Ar ionization total cross sections”, Phys. Rev.,A6, No. 3, 1031–1036 (1972).

    Google Scholar 

  24. D. Rapp and P. Englander-Golden, “Total cross sections for ionization and attachment in gases by electron impact. I. Positive ionization”, J. Chem. Phys.,43, No. 5, 1464–1479 (1965).

    Google Scholar 

  25. A. Gedanken, J. Jortner, B. Raz, and A. Szöke, “Electronic energy transfer phenomena in rare gases”, J. Chem. Phys.,57, No. 8, 3456–3469 (1972).

    Google Scholar 

Download references

Authors

Additional information

Translated from Lazernye Sistemy, pp. 15–34, 1982.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sorokin, A.R. Population processes in high-pressure inert-gas-mixture lasers. J Russ Laser Res 7, 332–345 (1986). https://doi.org/10.1007/BF01120145

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01120145

Keywords

Navigation