Skip to main content
Log in

Diagnostics of nonequilibrium states in molecular lasers

  • Published:
Journal of Soviet Laser Research Aims and scope

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literature Cited

  1. R. J. Emrich (ed.), Methods of Experimental Physics. Fluid Dynamics, Vol. 18, Part A and Part B, Academic Press, N. Y. (1981).

    Google Scholar 

  2. R. Goulard (ed.), Combustion Measurements. Modern Techniques and Instrumentation, Academic Press, N. Y. (1976).

    Google Scholar 

  3. M. Lapp and C. M. Penneg (eds.), Laser Raman Gas Diagnostics, Plenum Publ., N. Y. (1974).

    Google Scholar 

  4. L. N. Pyatnitskii, Laser Diagnostics of Plasma [in Russian], Atomizdat, Moscow (1976).

    Google Scholar 

  5. S. A. Akhmanov and N. I. Koroteev, Nonlinear Optics Methods in Light-Scattering Spectroscopy [in Russian], Nauka, Moscow (1983).

    Google Scholar 

  6. R. I. Soloukhin (ed.), Laser Diagnostics of Plasma, Collect. of Scient. Papers [in Russian], ITMO AN BSSR (Inst. of Heat and Mass Exchange, Beloruss. Acad. Sci.), Minsk (1978).

    Google Scholar 

  7. R. I. Soloukhin (ed.), Optical Methods of Investigating Gas Streams, Collect. of Scient. Papers [in Russian], ITMO AN BSSR, Minsk (1979).

    Google Scholar 

  8. R. I. Soloukhin (ed.) Modern Experimental Methods of Investigating Heat and Mass Exchange Processes, Collect. of Scient. Papers [in Russian], ITMO AN BSSR, Minsk (1981), Parts I and II.

    Google Scholar 

  9. R. I. Soloukhin (ed.), Methods of Infrared Diagnostics, Collect. of Scient. Papers [in Russian], ITMO AN BSSR, Minsk (1982).

    Google Scholar 

  10. G. Herzberg, Molecular Spectra and Molecular Structure, Vol. 2, Van Nostrand, N. Y. (1945).

    Google Scholar 

  11. M. A. El'yashevich, Atomic and Molecular Spectroscopy [in Russian], Fizmatgiz, Moscow (1962).

    Google Scholar 

  12. S. S. Penner Quantitative Molecular Spectroscopy and Gas Emissivities, Addison-Wesley, Reading, MA (1963).

    Google Scholar 

  13. G. Amat and M. Pimbert, “On Fermi resonance in carbon dioxide,” J. Mol. Spectrosc.,16, No. 2, 278–290 (1965).

    Google Scholar 

  14. C. P. Courtoy, “Spectres de vibratio-rotation de molecues simples diatomiques ou polyatomiquies avec long parcours d'absorption. VII. Le spectre de C12O2 16 entre 3500 et 8000 cm−1 et le constants moleculaires de cette molecule,” Can. J. Phys.,35, No. 5, 609–648 (1947).

    Google Scholar 

  15. L. S. Rothman and L. D. G. Young, “Infrared energy levels and intensities of carbon dioxide. II,” J. Quant. Spectrosc. Radiat. Transfer (JQSRT), 25, No. 6, 505–524 (1981).

    Google Scholar 

  16. L. S. Rothman, “AFGL atmospheric absorption line parameters complication, 1980 version,” Appl. Opt.,20, No. 5, 791–796 (1981). L. S. Rothman and W. S. Benedict, “Infrared energy levels and intensities of carbon dioxide.,” ibid., Appl. Opt.17, No. 16, 2605–2611 (1978).

    Google Scholar 

  17. V. L. Glushko (ed.), Thermodynamic Properties of Individual Substances (Handbook) [in Russian], 4 Vols., Vol. 1, Book 1, Nauka, Moscow (1978); Vol. 2, Book 1, (1979).

    Google Scholar 

  18. T. R. Todd, C. M. Clayton, W. B. Telfair, T. K. McCubbin, and J. Pliva, “Infrared emission of12C16O,13C16O,12C18O,” J. Mol. Spectrosc.,62, No. 2, 201–227 (1976).

    Google Scholar 

  19. I. F. Golovnev, V. G. Sevast'yanenko, and R. I. Soloukhin, “Mathematical modeling of carbon-dioxide characteristics,” Inzh.-Fiz. Zh.,36, No. 2, 197–203 (1979).

    Google Scholar 

  20. I. F. Golovnev, “Calculation of the energy of vibrational states in the rotational constants of the CO2 molecule with allowance for the Fermi Resonance,” Novosibirsk (1977). Manuscript submitted to Inst. Theor. and Math. Phys., Siberian Div. USSR Acad. Sci. (ITPM SO AN SSSR). Dep. Paper No. 1686-77, VINITI (1977).

  21. I. F. Golovnev, “Radiative characteristics of carbon monoxide,” Candidate's Dissertation, Novosibirsk (181).

  22. K. J. Siemsen and B. G. Whitford, “Heterodyne frequency measurements of CO2 laser sequenceband transitions,” Opt. Commun.,22 No. 1, 11–16 (1977).

    Google Scholar 

  23. J. Dupre-Maquaire and P. Pinson, “Emission spectrum of CO2 in the 9.6-μm region,” J. Mol, Spectrosc.,62, 181–191 (1976).

    Google Scholar 

  24. J. P. Moncilalin, M. J. Kelly, J. E. Homas, N. A. Kurnit, and A. Javan, “Accurate wavelength measurements of P-branch transition of the 0111-[111O, 0310]1 band of C12O2 16 and determination of the band parameters,”ibid.,64, 491–494 (1977).

    Google Scholar 

  25. F. R. Petersen, D. G. McDonald, J. D. Cupp, and B. L. Danielson “Rotational constants of C12O2 16 from beats between Lamp-dip-stabilized lasers,” Phys. Rev. Lett.,31, No. 9, 573–576 (1973).

    Google Scholar 

  26. B. G. Whitford, K. J. Siemsen, and J. Reid, “Heterodyne frequency measurements of CO2 laser hot-band transitions,” Opt. Commun.,22, No. 3, 261–264 (1977).

    Google Scholar 

  27. D. Bailly, R. Farreng, and C. Rossetti, “Vibrational, luminescence of CO2 excited by dc discharge. Rotational and vibrational molecular constants,” J. Mol. Spectrosc.,70, 124–133 (1978).

    Google Scholar 

  28. A. Baldacci et al., Absorption spectrum of carbon dioxide at 4.8 μm,”ibid.,70, No. 1, 143–159 (1978).

    Google Scholar 

  29. K.-P. Huber and G. Herzberg, Constants of Diatomic Molecules [Russian translation], in two Vols., Mir, Moscow (1984).

    Google Scholar 

  30. R. W. F. Gross and J. F. Bott (eds.), Handbook of Chemical Lasers, Wiley, N. Y. (1976).

    Google Scholar 

  31. T. L. Cottorel and L. C. McCoubray, Molecular Energy Transfer in Gases, Butterworths, London (1961).

    Google Scholar 

  32. E. E. Nikitin and A. I. Osipov, “Vibrational relaxation in gases,” Itogi Nauki i Tekhniki, No. 4, Ser. Kinetika i Kataliz, Moscow (1979).

  33. B. F. Gordiets, A. I. Osipov, and L. A. Shelepin, Kinetic Processes in Gases and Molecular Lasers [in Russian], Nauka, Moscow (1980).

    Google Scholar 

  34. A. A. Likalter, “Relaxation of the symmetric vibrational mode of the CO2 molecule,” Zh. Prikl. Mekh. Tekh. Fiz., No. 3, 8–17 (1975).

    Google Scholar 

  35. L. D. Gray and A. T. Young, “Relative intensity calculations for carbon dioxide-IV. Calculations of the partition function for isotopes of CO2,” JQSRT,9, No. 5, 569–590 (1969).

    Google Scholar 

  36. L. D. Gray et al., “Relative intensity calculations for carbon dioxide,” JQSRT,5, No. 2, 291–301 (1965);5, No. 4, 569–585 (1967);7, No. 5, 795–805 (1967).

    Google Scholar 

  37. E. Andrade, M. H. Silva, and G. Amat, “Influence of Fermi resonance on the rotational constants of linear triatomic, molecules,” J. Mol. Spectrosc.,29, No. 3, 384–401 (1969).

    Google Scholar 

  38. C. B. Suarez and F. P. J. Valero, “Absolute intensity measurements at different temperatures of the C12O2 16 bands 30°1I→00°0 and 30°1IV→00°0,” JQSRT,19, 569–578 (1978); Measurement at different temperatures of absolute intensities, line half-widths, and broadening by Ar and N2 for the 30°1II→00°0 band of CO2,” ibid. JQSRT,19, 579–590 (1978).

    Google Scholar 

  39. H. D. Downing and R. H. Hunt, “Line intensities of CO2 in the 2.0-μ region,”ibid,13, 311–321 (1973).

    Google Scholar 

  40. E. Arie, N. Lacome, and C. Rosettie, “Spectroscopie par source laser. I. Etude experimentale des intensites et largeurs des raies de la transition 00°1-(10°0, 02°0)I de CO2,” Can. J. Phys.,50, 1800–1894 (1972).

    Google Scholar 

  41. “Spectroscopie avec source laser. Etude des transitions the vibration-rotationν 3-ν 1,ν 3-2ν 2 et (ν 3+ν 2)-(ν 1+ν 2) de l'anhydride carbonique,” C. R. Acad. Sci. Paris,268, Ser. B. 1640–1643 (1969).

  42. M. O. Bulanin, V. P. Bulychev, and E. B. Khodos, “Determination of the parameters of vibrational-rotational lines in the 9.4- and 10.4-μm bands at various temperatures,” Opt. Spektrosk.,48, No. 4, 732–737 (1980).

    Google Scholar 

  43. A. S. Bikyukov, A. Yu. Volkov, E. M. Kudryavtsev, and R. I. Serikov, “Analysis of data on the probability of spontaneous emission and on the impact-broadening cross sections of the 00°1–10°0 transitions of the CO2 molecule,” Kvantovaya Elektron. (Moscow)3, No. 8, 1748–1754 (1976).

    Google Scholar 

  44. R. A. Toth, “Line strengths of N2O in the 1120–1440-cm−1 region,” Appl. Opt.,23, No. 11, 1825–1834 (1984).

    Google Scholar 

  45. J. T. Jeffries, Spectral Line Formation, Blaisdell, Waltham (1968).

    Google Scholar 

  46. C. H. Townes and A. S. Shawlow, Microwave Spectroscopy, McGraw-Hill, N. Y. (1955).

    Google Scholar 

  47. H. R. Griem, Spectral Line Broadening in Plasmas, Academic Press, N. Y. (1974).

    Google Scholar 

  48. W. H. Christiansen, G. J. Mullaney, and A. Hertzberg, “Absorption in CO2 at 10.6 μm with rotational line overlap,” Appl. Phys. Lett.,18 No. 9, 385–387 (1971).

    Google Scholar 

  49. J. L. Miller and E. V. George, “High-pressure absorption spectrum of CO2 laser bands at 10 μm,”ibid.,27, No. 12, 665–667 (1975).

    Google Scholar 

  50. R. I. Soloukhin and N. A. Fomin, “Resonant (10 μm) absorption of CO2 behind the front of a shock wave,” Zh. Prikl. Mekh. Tekh. Fiz., No. 1, 42–48 (1977).

    Google Scholar 

  51. J. L. Miller, “The high-pressure absorption spectra of the CO2 10.6- and 9.4-μm bands,” J. Appl. Phys.,49, No. 6, 3076–3083 (1978).

    Google Scholar 

  52. I. E. Zabelinskii, N. A. Fomin, and O. P. Shatalov, “Investigation of the absorption coefficient of 10.6-μm radiation by carbon dioxide molecules at temperatures up to 3500 K,” Inzh.-Fiz. Zh.,37, No. 6, 1074–1082 (1979).

    Google Scholar 

  53. B. H. Winters, S. Silverman, and W. S. Benedict, “Line shape in the wing beyond the band head of the 4.3-μm band of CO2,” JQSRT,4, No. 4, 527–537 (1964).

    Google Scholar 

  54. R. Ely and T. K. McCubbin, Jr., “The temperature dependence of the self-broadened half-width of the P-20 line of the 001–100 band of CO2” Appl. Opt.,9, No. 5, 1230–1231 (1970).

    Google Scholar 

  55. L. D. Tubbs and D. Williams, “Broadening of infrared absorption lines at reduced temperatures: carbon dioxide,” JOSA,62, No. 1, 284–289 (1972).

    Google Scholar 

  56. R. L. Leonard, “Measurements of small signal absorption at high temperature for the 001–100 band of CO2,” Appl. Opt.,13, No. 8, 1920–1922 (1974).

    Google Scholar 

  57. S. A. Munjee and W. H. Christiansen, “Mixed mode contributions to absorption in CO2 at 10.6 μm,”ibid.,12, No. 5, 993–996 (1973).

    Google Scholar 

  58. A. M. Robinson and Y.-K. Hsieh, “Equilibrium temperatures in a CO2 TEA laser,” J. Appl. Phys.,48, No. 3, 1589–1595 (1977).

    Google Scholar 

  59. A. M. Robinson and N. Sutton, “High-temperature absorption in the 10.4 μm band of CO2,” Appl. Opt.,18, No. 3, 378–385 (1979).

    Google Scholar 

  60. A. M. Robinson and E. F. Girczyc, “High temperature 10.4-μm absorption in CO2−He−N2 mixtures,”ibid.,19, No. 1, 1969–1972 (1980).

    Google Scholar 

  61. A. M. Robinson, “High-temperature absorption on the P(26)–P(32) CO2 laser transitions,” Can. J. Phys.,5, No. 11, 1896–1902 (1979).

    Google Scholar 

  62. A. M. Robinson and N. Sutton, “Infrared absorption at 10.6 μm in CO2 at elevated temperatures,” Appl. Opt.,16, No. 10, 2622–2633 (1977).

    Google Scholar 

  63. A. M. Robiknson and J. S. Weiss, “Temperature dependence of the line width of the CO2 laser transitions,” Can. J. Phys.,58, No. 4, 512–515 (1980).

    Google Scholar 

  64. W. G. Planet, J. R. Aronson, and J. F. Butler, “Measurements of the widths and strengths of low-J lines of theν 2 Q branch of CO2,” J. Mol. Spectrosc.,54, No. 2, 331–334 (1975).

    Google Scholar 

  65. J. R. Aronson, P. C. von Thuna, and J. F. Butler, “Tunable diode laser high resolution spectroscopic measurements of theν 2 vibration of carbon dioxide,” Appl. Opt.,14, No. 5, 1120–1127 (1975).

    Google Scholar 

  66. W. C. Planet, G. L. Tettemer and J. S. Knoll, “Temperature dependence of intensities and widths of N2-broadened lines in the 15-μm CO2 band from tunable laser measurements,” JQSRT,20, No. 6, 547–556 (1978).

    Google Scholar 

  67. W. G. Planet and G. L. Tettemer, “Temperature-dependent intensities and widths of N2 broadened Co2 lines at 15 μm from tunable laser measurements,”ibid.,22, No. 4, 345–354 (1979).

    Google Scholar 

  68. G. L. Tettemer and W. G. Planet, “Intensities and pressure-broadened intensities and widths of CO2 R-branch lines at 15 μm from tunable laser measurements,”ibid.,24, No. 4, 343–345 (1980).

    Google Scholar 

  69. R. S. Eng and A. W. Mantz, “Tunable diode laser spectroscopy of CO2 in the 10- to 15-μm spectral region-lineshape and Q-branch head absorption profile,” J. Mol. Spectrosc.,74, No. 3, 331–344 (1979).

    Google Scholar 

  70. A. R. Strichuk and A. A. Offenberger, “High-temperature absorption in CO2 at 10.6 μm,” Appl. Opt.,13, No. 11, 2643–2646 (1974).

    Google Scholar 

  71. O. V. Achasov, S. A. Labuda, R. I. Soloukhin, and N. A. Fomin, “Diagnostics of molecular states of carbon monoxide from resonant absorption of CO2-laser radiation,” Dokl. Akad. Nauk SSSR,249, No. 6, 1353–1356 (1979).

    Google Scholar 

  72. A. B. Britan and A. M. Starik, “Concerning resonant absorption of radiation (10.6 μm) in CO2−N2 mixtures behind a shock-wave front,” Zh. Prikl. Mekh. Tekh. Fiz., No. 3, 20–23 (1980).

    Google Scholar 

  73. N. Lacome, A. Levy, and G. Guelachvili, “Fourier transform measurement of self-, N2- and O2-broadening of N2O lines: temperature dependence of linewidths,” Appl. Opt.,23, No. 3, 425–435 (1984).

    Google Scholar 

  74. J. A. Sell, “Temperature dependence of the absorption coefficient and halfwidth of the P(6) line of carbon monoxide,” JQSRT,23, 595–598 (1980).

    Google Scholar 

  75. S. B. Petrov and M. V. Podkladenko, “Investigation of broadening effects in the CO2 absorption band at 4.3 μm in a wide range of temperatures,” Zh. Prikl. Spektrosk.,22, No. 3, 473–476 (1975).

    Google Scholar 

  76. A. M. Robinson and J. S. Weiss, “Absorption of 10 μm in CO2−He and CO2−N2 mixtures at elevated temperatures,” Can. J. Phys.,6, 1656–1660 (1982).

    Google Scholar 

  77. R. L. Abrams, “Broadening coefficients for the P20 CO2 laser transition,” Appl. Phys. Lett.,25, No. 10, 609–611 (1974).

    Google Scholar 

  78. T. K. McCubbin, Jr. and T. R. Mooney, “A study of the strengths and widths of lines in the 9.4 and 10.4-μm CO2 bands,” JQSRT,8, No. 5, 1255–1264 (1968).

    Google Scholar 

  79. C. Young and R. E. Chapman, “Line widths and strengths for the 9.4- and 10.4 μm CO2 bands,” ibid.,14, 679–690 (1974).

    Google Scholar 

  80. A. D. Devir and U. P. Oppenheim, “Line width determination in the 9.4-μm, and 10.4 μm CO2 bands, of CO2 using a CO2 laser,” Appl. Opt.,8, No. 10, 2121–2123 (1969).

    Google Scholar 

  81. V. V. Nevdakh, “Spontaneous-emission probabilities and collisional linewidths of the laser transitions 00°1→[10°0, 02°0] of the CO2 molecule,” Kvantovaya Elektron.,11, No. 8, 1622–1627 (1984).

    Google Scholar 

  82. O. V. Achasov, R. I. Soloukhin, and N. A. Fomin, “Gas-stream diagnostics using resonant absorption,” Preprint No. 8, ITMO AN BSSR, Minsk (1981).

    Google Scholar 

  83. V. P. Kudrya, “Calculation of the Voigt function at the line center,” Opt. Spetkrosk.,55, No. 6, 1113–1114 (1983).

    Google Scholar 

  84. F. Herbert, “Spectrum line profiles; a generalized Voigt function including collisional narrowing,” JOSRT,14, No. 9, 943–951 (1974).

    Google Scholar 

  85. V. S. Matveev, “Approximate representations of the absorption coefficient and of the equivalent linewidths with Voigt profile,” Zh. Prikl. Spektrosk.,16, No. 2, 228–233 (1972).

    Google Scholar 

  86. N. G. Basov (ed.), Chemical Lasers [in Russian], Nauka, Moscow (1982).

    Google Scholar 

  87. S. A. Losev, Gasdynamic Lasers [in Russian], Nauka, Moscow (1977).

    Google Scholar 

  88. J. J. Olivero and R. L. Longbotham, “Empirical fits to the Voigt line width: a brief review,” JQSRT,17, 233–236 (1977).

    Google Scholar 

  89. R. I. Soloukhin and N. A. Fomin, Gasdynamic Mixing Lasers [in Russian], Nauka i Tekhnika, Minsk (1984).

    Google Scholar 

  90. A. Maitland and M. H. Dunn, Laser Physics, Am. Elsevier (1970).

  91. T. M. Il'inova, M. P. Il'inov, and R. V. Khokhlov, “Interaction between radiation and quantum systems with relaxing sublevels,” Kvantovaya Elektron. (Moscow), No. 6, 43–52. (1971).

    Google Scholar 

  92. L. M. Frantz and S. Nodvik, “Theory of pulse propagation in a laser amplifier,” J. Appl. Phys.,34, No. 8, 2348–2349 (1963).

    Google Scholar 

  93. M. V. Bogdanova, T. M. Il'inova, and R. V. Khokhlov, “Interaction of a light pulse with a multilevel molecular system,” Kvantovaya Elektron. (Moscow),3, No. 9, 1887–1895 (1976).

    Google Scholar 

  94. B. I. Stepanov, S. A. Trushin, V. V. Churakov, and Ya. K. Lapko, “Certain laws governing the excitation of molecule vibrations by laser radiation,” Preprint, Inst. Phys. Beloruss. Acad. Sci., No. 198, Minsk (1980).

  95. D. G. Bakanov, A. I. Odintsov, and A. I. Fedoseev, “Gain saturation in a moving active medium,” Zh. Prikl. Spektrosk.,34, No. 4, 630–634 (1981).

    Google Scholar 

  96. A. G. Ponomarenko and V. N. Tishchenko, “Mathematical modeling of pulsed CO2 amplifiers at radiation durations 10−6−10−5 sec,” Preprint ITPM SO AN SSSR, No. 1, Novosibirsk (1978).

  97. A. I. Osipov and V. Ya. Panchenko, Thermal Effects in Interaction of Laser Radiation with Molecular Gases [in Russian], Moscow Univ. Press (1983).

  98. V. A. Levin, V. V. Netesov, and A. M. Starik, “Numerical investigation of the propagation of a 10.6-μm radiation pulse through an absorbing medium,” Zh. Prikl. Mekh. Tekh. Fiz., No. 3, 14–19 (1984).

    Google Scholar 

  99. O. V. Achasov and N. A. Fomin, “Saturation effects in the propagation of a radiation pulse in resonantly absorbing media,” in: Properties of Heat and Mass Exchange Processes [in Russian], Minsk (1979), pp. 72–77.

  100. A. S. Biryukov, “Kinetics of physical processes in gasdynamic lasers,” in: Theoretical Problems of Spectroscopy and of Gasdynamic Lasers [in Russian], Nauka, Moscow (1975). Vol. 83, pp. 13–96.

    Google Scholar 

  101. R. M. Goody, Atmospheric Radiation, Oxford Univ. Press (1964).

  102. N. N. Kudryavtsev and S. S. Novikov, “Theoretical and experimental investigations of IR radiation transfer in vibrationally nonequilibrated nuclear gas containing CO2 and CO,” Int. J. Heat Mass Transf.,25, No. 10, 1541–1558 (1982).

    Google Scholar 

  103. S. E. Giles and W. G. Vincenti, “Coupled radiative and vibrational nonequilibrium in a diatomic gas with application to gasdynamics,” JQSRT,10, No. 1, 71–97 (1970).

    Google Scholar 

  104. K. G. P. Sulzman, “Non-LTE spectral absorption coefficient for vibrational-rotational bands of diatomic molecules,”ibid.,14, No. 3, 413–418 (1974).

    Google Scholar 

  105. V. I. Kruglov and Yu. V. Khodyko, “Vibrational nonequilibrium radiation in diatomic gases,” Int. J. Heat Mass Transf.,21, No. 2, 163–173 (1978).

    Google Scholar 

  106. K. K. Koopman and A. K. Saunders, “Theory of quantitational infrared emission spectroscopy for determination of relative population of CO2 vibrational energy levels,” JQSRT,10, No. 3, 383–389 (1970).

    Google Scholar 

  107. N. N. Kudryavtsev and S. S. Novikov, “A study of infrared radiation of vibrationally excited CO in the 4.7-μm band and CO2 in the 4.3-μm and 2.7-μm bands,” Phys. Rev. Appl.,16, No. 1, 43–66 (1981).

    Google Scholar 

  108. V. A. Kamenshchikov, Yu. A. Plastilin, V. M. Nikolaev, and L. A. Novitskii, Radiative Properties of Gases at High Temperatures [in Russian], Mashinostroenie, Moscow (1971).

    Google Scholar 

  109. I. F. Golovnev and V. G. Sevast'yanenko, “Numerical modeling of the absorption coefficient in the molecular band 0000–0110 of the CO2 molecule,”, in: Astrophysical Research [in Russian], Novosibirsk (1976).

  110. I. I. Galaktionov, T. D. Korovkina, V. D. Mikhalevskii, and I. V. Modmoshenskii, “Measurement of the temperature and concentration of CO2, behind a shock wave using infrared bands,” Tepolofiz. Vys. Temp.,7, No. 1, 85–90 (1969).

    Google Scholar 

  111. A. P. Blom and N. H. Pratt, “A theoretical interpretation of emission-absorption intensity ratio temperature measurements in the absence of thermal equilibrium,” JQSRT,9, No. 3, 423–442 (1969).

    Google Scholar 

  112. L. P. Bakhir and Yu. V. Overchenko, “Determination of the populations of the vibrational levels of the CO2 molecule in gasdynamic lasers by IR spectroscopy methods,” Zh. Prikl. Spektrosk.,30, No. 1, 44–56 (1979).

    Google Scholar 

  113. N. N. Kudryavtsev, S. S. Novikov, and I. B. Svetlichnyim, “Experimental determination of the temperature of the 0001 level of the carbon dioxide molecule in a nonequilibrium stream of CO2+N2+H2(He) mixtures,” Fiz. Goreniya Vzryva, No. 2, 205–212 (1977).

    Google Scholar 

  114. S. P. Vagin, S. S. Vorontosov, and Yu. A. Yakobi, “Integral luminescence of the active medium of a CO2 laser,” Zh. Prikl. Spektrosk.,29, No. 4, 621–626 (1978).

    Google Scholar 

  115. N. N. Kurdryavtseva and S. S. Novikova, “Optical method of measuring vibrational temperatures in thermodynamically nonequilibrium gas streams” in: Proc. II All-Union Conf. on Astrophysical Research Methods, Minsk (1979), pp. 92–96.

  116. S. Bihl, J. P. Fouassier, and R. Ioeckle, “Calcul de l'emission inrarouge de lileux laser,” JQSRT,14, No. 6, 819–827 (1974).

    Google Scholar 

  117. N. M. Smirnov and G. V. Shlyapnikov, “Infrared-radiation transport in molecular gases,” Usp. Fiz. Nauk,130, No. 3, 377–414 (1980).

    Google Scholar 

  118. C. L. Tien, “Radiative properties of gases,” in: Advances of Heat Transfer [Russian translation], Mir, Moscow (1977).

    Google Scholar 

  119. D. C. Edwards, “Radiative characteristics of materials,” Teploperedacha,91, No. 2, 135–144 (1969).

    Google Scholar 

  120. D. C. Edwards, L. C. Glassen, W. C. Hauser, and J. S. Tasher, “Radiant heat exchange in nonisothermal nongrey [sic!] gases,”ibid.,89, No. 3, 235–242 (1967).

    Google Scholar 

  121. C. N. Plass, “Useful representations for measurements of spectral band absorption,” J. Opt. Soc. Am.,50, No. 6, 868–873 (1960).

    Google Scholar 

  122. L. I. Kopylova and M. V. Podkladenko, “Emissivity of heated carbon dioxide in the 2100–2500 cm−1 region in the absence of thermodynamic equilibrium,” Zh. Prikl. Spetkrosk.,12, No. 6, 811–816 (1979).

    Google Scholar 

  123. J. R. Hudson, “The nonequilibrium emissivity of carbon dioxide near 4.3 μm,” Aeronaut. Res. Counc., Current Paper No. 1116, London (1970), p. 84.

  124. S. A. Losev, “Infrared radiation of carbon dioxide under nonequilibrium conditions,” Nauch. Tr. im. Mosk. Gos. Univ., No. 43, 79–86 (1976).

    Google Scholar 

  125. N. N. Kudryavtsev and S. S. Novikov, “Method for measurement of vibrational temperatures of thermodynamically nonequilibrium gas streams,” Inzh.-Fiz. Zh.,38, No. 3, 411–419 (1980).

    Google Scholar 

  126. B. A. Khmelinin and Yu. A. Plastilin, “Radiative and absorptive properties of the molecules H2O, CO2, and HCl at temperatures 300–3000 K,” Tr. TsAGI, No. 1656, 102–146 (1975).

    Google Scholar 

  127. N. N. Kudryavtsev and S. S. Novikov, “Numerical investigations of the spectral emission intensity and absorptivity of CO2 and CO molecules under vibrational-nonequilibrium conditions,” Inzh.-Fiz. Zh.,42, No. 5, 805–813 (1982).

    Google Scholar 

  128. N. N. Kudryavtsev and S. S. Novikov, “Integral characteristics of emission and absorption of CO2 and CO bands under vibrational-nonequilibrium conditions,” Zh. Prikl. Spekrosk.,37, No. 1, 125–132 (1982).

    Google Scholar 

  129. J. I. King, “Band absorption model for arbitrary line variance,” JQSRT,4, No. 6, 705–712 (1964).

    Google Scholar 

  130. W. M. Elsasser, “Mean absorption and equivalent absorption coefficient of a band spectrum,” Phys. Rev.,54, No. 1, 126–138 (1948).

    Google Scholar 

  131. S. A. Golden, “The Doppler analog of the Elsasser band model,” JQSRT,7, No. 3, 483–495 (1967).

    Google Scholar 

  132. S. A. Golden, “The Voigt analog of an Elsasser band model,”ibid.,9, No. 8, 1067–1083 (1969).

    Google Scholar 

  133. V. S. Matveev, “Approximate representations of the Elsasser and statistical band models,” Zh. Prikl. Spektrosk.,12, No. 3, 486–491 (1970).

    Google Scholar 

  134. A. Goldman, “On simple approximations to the equivalent width of a Lorentz line,” JQSRT,8, No. 2, 829–833 (1968).

    Google Scholar 

  135. C. D. Rodgers and W. Williams, “Integrated absorption for Voigt Profiles,” ibid., JQSRT14, No. 3, 319–322.

  136. L. A. Young and W. J. Eachus, “Dipole moment function and vibration-rotation matrix elements for CO,” J. Chem. Phys.,144, No. 12, 4195–4198 (1966).

    Google Scholar 

  137. L. A. Young, “CO infrared spectra,” JQSRT,8, No. 2, 693–717 (1968).

    Google Scholar 

  138. P. Varanasi and S. Sarangi, “Measurements of intensities and nitrogen-broadened linewidths in the CO fundamental at low temperatures,”ibid.,15, No. 6, 473–483 (1975).

    Google Scholar 

  139. H. D. Downing, L. R. Brown, and R. H. Hunt, “Line intensities of CO2 in the 2.7-μm region,”ibid.,15, No. 3, 205–211 (1975).

    Google Scholar 

  140. J. P. Hodgson, “A survey of the infrared radiation properties of carbon dioxide,” Aeronaut. Res. Counc. Current Papers, No. 981, London (1968).

  141. W. Malkmus, “Infrared emissivity of carbon dioxide (4.3-μm band),” JOSA,53, No. 8, 951–964 (1963).

    Google Scholar 

  142. W. Malkmus, “Infrared emissivity of carbon dioxide (2.7-μm band),”ibid.,54, No. 6, 751–758 (1964).

    Google Scholar 

  143. M. M. Abu-Romia and C. L. Tien, “Measurements and correlations of infrared radiation of carbon monoxide and elevated temperatures,” JQSRT,6, No. 2, 143–167 (1966).

    Google Scholar 

  144. R. Beck, W. Englich, and K. Curs, Table of Laser Lines in Gases and Vapors (2nd ed.), Springer, Berlin (1978).

    Google Scholar 

  145. V. M. Osipov, “Influence of Fermi resonance on the relative intensities of the vibrational bands of carbon dioxide,” Opt. Spetrosk.,46, No. 11, 48–56 (1979).

    Google Scholar 

  146. M. P. Lisitsa and V. L. Strizhevskii, “Temperature dependence of the intensities of vibrational-rotational absorption bands of gases in the case of Fermi resonance,”ibid.,7, No. 4, 478–486 (1959).

    Google Scholar 

  147. J. D. Anderson, Gasdynamic Lasers: An Introduction, Wiley, Academic Press, N. Y. (1976).

    Google Scholar 

  148. D. E. Burch and D. A. Gryvnak, “Laboratory investigation of the absorption and emission of infrared radiation,” JQSRT,6, No. 3, 229–240 (1966).

    Google Scholar 

  149. D. E. Burch, D. A. Gryvnak, and D. Williams, “Infrared absorption of carbon dioxide,” Appl. Opt.,1, No. 3, 759–769 (1962).

    Google Scholar 

  150. V. M. Doroshenko, N. N. Kudryavtsev, and S. S. Novikov, “Measurement and calculation of the gain and of the vibrational temperatures in a CO2 gasdynamic laser,” Kvantovaya Elektron. (Moscow),8, No. 7, 1476–1483 (1981).

    Google Scholar 

  151. N. N. Kudryavtsev, S. S. Novikov, and I. B. Svetlichnyi, “Method of measuring vibrational temperatures in a gasdynamic CO2 laser,”ibid.,6, No. 4, 690–700 (1979).

    Google Scholar 

  152. V. M. Doroshenko, N. N. Kudryavtsev, and S. S. Novikov, “Determination of vibrational temperatures and of the gain in a gasdynamic CO2 laser with CO and NO added. Methods of theoretical and experimental determination of the vibrational temperatures,” Fiz. Goreniya Vzryva,17, No. 3, 83–93 (1981).

    Google Scholar 

  153. A. G. Sviridov and N. N. Sobolev, “On the question of measuring the Planck temperature by the method of spectral-line inversion,” Zh. Eksp. Teor. Fiz.,24, No. 1, 93–106 (1953).

    Google Scholar 

  154. A. G. Geydon and I. R. Hurle, Shock Tube in High-Temperature Chemical Physics, Chapman & Hall, London (1963).

    Google Scholar 

  155. E. V. Stupochenko, S. A. Losev, and A. I. Osipov, Relaxation Processes in Shock Waves [in Russian], Nauka, Moscow (1965).

    Google Scholar 

  156. N. N. Sobolev, “Optical methods of plasma-temperature measurement,” Tr. FIAN,7, No. 7, 160–229 (1956).

    Google Scholar 

  157. S. Faizulaev, N. N. Sobolev, and E. M. Kudryavtsev, “Spectroscopic investigation of the state of a gas behind a shock wave. II,” Opt. Spektrosk.,8, No. 5, 585–593 (1960).

    Google Scholar 

  158. F. S. Faizulaev, N. N. Sobolev, and E. M. Kudryavtsev, “Spectroscopic investigation of the state of a gas behind a shock wave. III,”ibid.,8, No. 6, 761–768 (1960).

    Google Scholar 

  159. A. A. Mikaberidze, “Optical pyrometry of the gas-discharge plasma of molecular lasers,” in: Gas Lasers and Their Applications [in Russian], Vol. 102, Moscow (1977), pp. 58–101.

  160. L. P. Bakhir, “Determination of the populations of the vibrational levels of CO2 molecules in combustion-products gasdynamic lasers by infrared-spectroscopy methods,” Preprint IF AN BSSR No. 162, Minsk (1978).

  161. N. N. Ostroukhov and B. K. Tkachenko, “Measurement of vibrational energy and temperature of CO2 using the absolute blackbody model,” Dolgoprudnyi (1980). Manuscript presented by Moscow Physicotechnical Inst. Deposited in VINITI (1980), No. 4727-80.

  162. I. K. Babaev, A. T. Glazunov, V. P. Tychinskii, and S. N. Tsys, “Investigation of molecular CO2 laser with the aid of a selective generator,” Elektron. Tekh. Gazorazryadnye Prib., No. 3, 36–43 (1967).

    Google Scholar 

  163. N. Djeu, T. Kan, and C. L. Wolga, “Gain distribution, population densities, and rotational temperature for the (00°1)–(10°0) rotation-vibration transitions in a flowing CO2−N2−He laser,” IEEE J.QE-4, 256–260 (1968).

    Google Scholar 

  164. I. K. Babaev, A. T. Glazunov, and S. N. Tsys, “Method of measuring the populations of vibrational levels and of the temperature of molecular gases with the aid of a selective generator,” Zh. Prikl. Spektrosk.,10, No. 4, 583–587 (1969).

    Google Scholar 

  165. F. Legay, N. Legay-Sommaire, and G. Taieb, “Mechanism of a Co−N2 laser. 1. Study of the vibrational populations,” Can. J. Phys.,48, 1949–1955 (1970).

    Google Scholar 

  166. P. V. Avizonis, D. K. Dean, and P. Groteck, “Determination of vibrational and translational temperatures in gas-dynamic lasers,” Appl. Phys. Lett.,23, No. 7, 375–378 (1973).

    Google Scholar 

  167. L. J. Dienes and L. A. Weaver, “Laser gain characterization of near-atmospheric CO2: N2: He glows in a planar electrode geometry,” J. Appl. Phys.,44, No. 9, 4125–4136 (1973).

    Google Scholar 

  168. E. A. Ballik, B. K. Garside, J. Reid, and T. Tricker, “Reduction of the pumping efficiency in CO2 lasers at high discharge energy,”ibid.,46, No. 3, 1322–1331 (1975).

    Google Scholar 

  169. L. A. Weaver, L. H. Talor, and L. S. Denes, “Rotational temperature determinations in molecular gas lasers,”, ibid.,46, No. 9, 3951–3958 (1975).

    Google Scholar 

  170. S. P. Vagin and Yu. A. Yakobi, “Measurement of the temperatures of gaseous media containing carbon dioxide by the laser-probing method,” Inzh.-Fiz. Zh.35, No. 1, 5–10 (1978).

    Google Scholar 

  171. O. V. Achasov, S. A. Labuda, R. I. Soloukhin, and N. A. Fomin, “Determination of rotational and vibrational temperatures using a tunable CO2 laser,” Fiz. Goreniya Vzryva, No. 6, 57–64 (1979).

    Google Scholar 

  172. P. V. Grigor'ev, S. A. Murkov, R. I. Soloukhin, and Yu. A. Yakobi, “Determination of the temperatures of the rotational states of the CO2 molecules in gasdynamic lasers,” Khim. Fiz.,1, No. 1, 216–220 (1982).

    Google Scholar 

  173. V. A. Spazhakin, “Diagnostics of the active medium of a CO2 laser,” in: Kinetic and Gasdynamic Processes in Nonequilibrium Gases [in Russian], A. M. Prokhorov, (ed.), Moscow (1982), pp. 31–32.

  174. K. P. Alekseev, G. V. Voitovskii, and A. A. Mikhailov, “Measurement of translational and vibrational temperatures in nonstationary gasdynamic streams containing CO2 molecules,” ibid. in: Kinetic and Gasdynamic Processes in Nonequilibrium Gases [in Russian], A. M. Prokhorov, (ed.), Moscow (1982), pp. 53–54.

  175. V. P. Oppenheim and P. Melman, “Spectroscopic studies with a tunable N2O laser,” JOSA,60, No. 3, 332–334.

  176. K. Siemsen, J. Reid, and C. Dang, “New techniques for the determination of vibrational temperatures, dissociation, and gain limitations in a cw carbon dioxide laser,” IEEE J.,QE-16, No. 6, 668–676 (1980).

    Google Scholar 

  177. C. Dang, J. Reid, and K. Garside, “Gain limitations in TE CO2 laser amplifiers,”ibid.,QE-16, No. 10, 1097–1103 (1980).

    Google Scholar 

  178. I. M. Bertel, V. O. Petukhov, S. V. Trushin, and V. V. Churakov, “Experimental and theoretical investigation of the gain on the lines of the second band of the sequence in a TEA CO2 laser,” Preprint No. 242, Phys. Inst. Beloruss. Acad. Sci., Minsk (1981).

    Google Scholar 

  179. I. M. Bertel', V. O. Petukhov, S. A. Trushin, and V. V. Churakov, “Influence of the active-medium composition on the gain in the 00o2-(10o1, 02o1)I, band of a TEA CO2 laser with UV preionization,” Kvantovaya Elektron. (Moscow),9, No. 7, 1405–1414 (1982).

    Google Scholar 

  180. I. M. Bertel', V. O. Petukhov, B. I. Stepanov, S. A. Trushin, and V. V. Churakov, “Investigation of the kinetics of the vibrational temperatures in a TEA CO2 laser,” ibid.,9, No. 8, 1630–1639 (1982).

    Google Scholar 

  181. I. M. Bertel', V. O. Petukhov, A. S. Solodukhin, S. A. Trushin, and V. V. Churakov, “Experimental investigation of the vibrational temperatures of the symmetric and deformation modes of the CO2 molecule in electric-discharge lasers,” Preprint No. 260, Phys. Inst. Beloruss. Acad. Sci., Minsk (1982).

    Google Scholar 

  182. I. M. Bertel' V. O. Petukhov, A. S. Solodukhin, S. A. Trushin, and V. V. Churakov, “Diagnostics of active media of CO2 lasers using nontraditional traditions of the CO2 molecule,” in: Nonequilibrium Processes in Gasdynamics [in Russian], R. I. Soloukhin (ed.), Minsk (1983), pp. 86–120.

  183. K. A. Vershchagin, A. Yu. Volkov, A. G. Sviridov, and S. N. Tskhai, “Investigation of the active medium of a waveguide CO2 laser,”. Preprint No. 109, Phys. Inst. USSR Acad. Sci., Moscow (1983).

    Google Scholar 

  184. O. V. Achasov and S. A. Labuda, “Modified procedure for determining the populations of the vibrational levels using a tunable CO2 laser,” in: Nonequilibrium Processes in Gasdynamics [in Russian], R. I. Soloukhin (ed.), Minsk (1983), pp. 121–132.

  185. O. V. Achasov, N. A. Fomin, and S. I. Shabunya, “Analysis of errors in the determination of the parameters of laser-active media by the laser-spectrograph, method,” Preprint No. 19, ITMO AN BSSR, Minsk (1984).

    Google Scholar 

  186. R. I. Soloukhin and Yu. A. Yakobi, “Concerning gain measurements,” Zh. Prikl. Mekh. Tekh. Fiz., No. 3, 3–12 (1974).

    Google Scholar 

  187. I. P. Oppenheim and M. Naftaly “Observation of mode pulling in a CO2 laser,” Appl. Opt.,23, No. 5, 661–664 (1984).

    Google Scholar 

  188. A. V. Artamonov, V. G. Gontaŕ, and S. A. Surguchenko, “Determination of the energy characteristics of the active medium of a CO2 laser from measurements of the gain,” Kvantovaya Elektron. (Moscow),10, No. 6, 1088–1092 (1983).

    Google Scholar 

  189. J. Stricker, “Deactivation of CO2 (010) and CO2 (001) by hydrogen and deuterium,” J. Chem. Phys.,64, No. 4, 1261–1266 (1976).

    Google Scholar 

  190. C. Simpson and T. Chandler, “A shock tube study of vibrational relaxation in pure CO2 and mixture of CO2 with inert gases, nitrogen, deuterium, and hydrogen,” Proc. R. Soc.,A-317, No. 1, 265–281 (1970).

    Google Scholar 

  191. D. C. Allen, T. Scrag, and C. J. S. M. Simpson, “Low-temperature fluorescence studies of the deactivation of the band-stretch manifold CO2,” Chem. Phys.,51, No. 3, 279–298 (1980).

    Google Scholar 

  192. N. N. Kudryavtsev, S. S. Novikov, and I. B. Svetlichnyi, “Vibrational temperatures of carbon dioxide in a gasdynamic laser with mixture, CO2+N2+He,” Fiz. Goreniya, Vzryva,15, No. 1, 122–126 (1979).

    Google Scholar 

  193. J. Rom and J. Stricker, “Effects of chemical reaction on the performance of gasdynamic lasers,” Acta Astron.,1, No. 5, 1101–1117 (1974).

    Google Scholar 

  194. N. N. Kudryavtsev, S. S. Novikov, and I. B. Svetlichnyi, “Influence of addition of molecular hydrogen on the gain of a CO2 laser in an expanding stream of carbon dioxide and nitrogen,” Fiz. Goreniya Vzryva,12, No. 5, 729–735 (1976).

    Google Scholar 

  195. J. M. Brupbacher, R. D. Kern, and B. V. O'Gady, “Reaction of hydrogen and carbon dioxide behind reflected shock waves,” J. Phys. Chem.,80, No. 6, 1031–1035 (1976).

    Google Scholar 

  196. D. M. Kuehn, “Importance of nozzle geometry to high-pressure gasdynamic lasers,” Appl. Phys. Lett.,21, No. 3, 68–82 (1972).

    Google Scholar 

  197. M. G. Ktalkherman, V. M. Mal'kov, and N. A. Ruban, “Experimental investigation of the flow field in gasdynamic-laser nozzles,” Mekh. Zhidk. Gaza, No. 5, 178–182 (1980).

    Google Scholar 

  198. Y. Sato and S. Tsuchiya, “Shock-tube study of vibrational energy transfer in the CO2−N2 CO2−CO systems,” J. Phys. Soc. Jpn.,33, No. 4, 1120–1129 (1972).

    Google Scholar 

  199. N. N. Kudryavtsev, S. S. Novikov, and I. B. Svetlichnyi, “CO2 vibrational temperature measurements in CO+N2O gasdynamic lasers,” Acta Astronautica,6, No. 4, 391–399 (1976).

    Google Scholar 

  200. A. G. Gaydon and H. G. Wolfhard, Flames; Their Structure, Radiation, and Temperatures, Chapman and Hall, London (1953).

    Google Scholar 

  201. Yu. E. Nesterikhin and R. I. Soloukhin, High-Speed Measurement Methods in Gasdynamics and in Plasma Physics [in Russian], Nauka, Moscow (1972).

    Google Scholar 

  202. N. I. Yushchenkova, S. M. Chernin, V. I. Chernysh, and S. A. Senkovenko, “Experimental determination of vibrational temperature in a supersonic carbon-dioxide jet,” Zh. Prikl. Spektrosk.,25, No. 2, 228–231 (1976).

    Google Scholar 

  203. L. P. Bakhir, “Determination of the populations of the vibrational levels of CO2 molecules in combustion-products gasdynamic lasers by infrared spectroscopy,” Preprint No. 162, Phys. Inst. Beloruss. SSSR, Minsk (1978).

    Google Scholar 

  204. L. P. Bakhir and Yu. V. Overchenko, “Determination of populations of CO2-molecule levels in gasdynamic lasers by IR spectroscopy methods,” Zh. Prikl. Spektrosk.,30, No. 1, 44–55 (1979).

    Google Scholar 

  205. V. A. Volkov, A. P. Zuev, N. N. Ostrokhov, and B. K. Tkachenko, “Flow structure and relaxation losses in a stream in a Laval nozzle on admission of CO2,” Manuscript submitted by Moscow Physicotech. Inst., VINITI dep. paper No. 1503-82, Moscow (1982).

  206. Inventors Cert. 594842, “Tunable CO2 Laser,” R. I. Soloukhin, Yu. A. Yakobi, and E. I. Vyazovich, Byull. Izobret., No. 11 (1979).

  207. Yu. A. Yakobi, “Spectrum retuning of laser emission by intracavity spatial filtering,” Kvantovaya Elektron. (Moscow),8, No. 3, 555–564 (1981).

    Google Scholar 

  208. Yu. A. Yakobi, “Spectrum retuning of laser emission by intracavity spatial filtering,” Preprint No. 23, ITPM SO AN SSSR, Novosbirsk (1980).

    Google Scholar 

  209. O. V. Achasov, S. A. Labuda, D. S. Ragozin, and N. A. Fomin, “Laser spectrograph for the diagnostics of nonequilibrium gas flows,” Preprint No. 17, ITMO AN BSSR, Minsk (1984).

    Google Scholar 

  210. O. V. Achasov and S. A. Labuda, “Electric-discharge CO laser with line selection,” in: Hydrodynamic of Heat and Mass Exchange in Power Equipment [in Russian], Minsk (1984), pp. 74–79.

  211. A. M. Prokhorov (ed.), Laser Handbook [in Russian], Vol. 2, Sov. Radio, Moscow (1978).

    Google Scholar 

  212. O. V. Achasov, P. A. Vityaz, S. A. Labuda, S. V. Popko, S. Sivets, N. A. Fomin, and V. K. Sheleg, “Porous mixing units for gasdynamic laser with selective thermal excitation,” Inzh.-Fiz. Zh.,38, No. 6, 989–993 (1980).

    Google Scholar 

  213. N. L. Evmenchikov and G. G. Kekalo, “Slaved four-channel signal shaper for the synchronization of apparatus in shock-tube experiments,” in: Nonequilibrium Processes in Gasdynamics [in Russian], R. I. Soloukhin (ed.), Minsk (1983), pp. 160–162.

  214. O. V. Achasov, A. S. Boreisho, A. M. Bykov, S. A. Labuda, V. F. Lebedev, A. V. Morozov, D. S. Ragozin, R. I. Soloukhin, and N. A. Fomin, “New honeycomb-construction nozzle block for gasdynamic lasers,” Zh. Tekh. Fiz.,54, No. 9, 1824–1826 (1984).

    Google Scholar 

  215. O. V. Achasov, A. S. Boreisho, A. M. Bykov, S. A. Labuda, V. F. Lebedev, A. V. Morozov, D. S. Ragozin, R. I. Soloukhin, and N. A. Fomin, “Investigation of gain characteristics of CO2 gasdynamic lasers with honeycomb nozzle blocks,” Preprint No. 18, ITMO AN BSSR, Minsk (1981).

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

About this article

Cite this article

Diagnostics of nonequilibrium states in molecular lasers. J Russ Laser Res 8, 79–188 (1987). https://doi.org/10.1007/BF01119997

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01119997

Keywords

Navigation