Skip to main content
Log in

Putative repressor binding sites in the regions mediating transcriptional control of viral and cellular genes

  • Published:
Bioscience Reports

Abstract

In this study, the sequences of several cellular genes (c-myc, c-fos, c-sis, c-mos, and the genes for urokinase, heat shock proteins, interleukin-2 and its receptor), thought to be controlled by negative regulatory factors, were examined. As a result of this comparison, multiple (and often clustered) copies of a 12 basepair (bp) element were identified in the flanking regions of these genes. Moreover, sequences with close homology to this 12 bp element were identified in specific control regions of some DNA and RNA tumor viruses. A consensus sequence (TTG nnn TTTTTT) was derived from an analysis of 111 of these elements. These sequence homologies have yielded a coherent first hypothesis, namely that this 12 bp element is the binding site of a transcriptional repressor protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Betholet C, Drillien R & Wittek R (1985) Proc. Natl. Acad. Sci. U.S.A.82, 2096–2100.

    Google Scholar 

  2. Bienz M (1985) Trends Biochem. Sci.10, 157–161.

    Google Scholar 

  3. Birnstiel M et al. (1985) Cell41, 349–357.

    Google Scholar 

  4. Blaire DG et al. (1981) Science212, 941–943.

    Google Scholar 

  5. Brady J & Khoury G (1985) Mol. Cell Biol.5, 1391–1399.

    Google Scholar 

  6. Broone S & Gilbert W (1985) Cell40, 537–546.

    Google Scholar 

  7. Cochran BH et al. (1984) Science226, 1080–1082.

    Google Scholar 

  8. Eliason JL, Weiss MA & Ptashne M (1985) Proc. Natl. Acad. Sci. U.S.A.82, 2339–2343.

    Google Scholar 

  9. Falck-Pederson E et al. (1985) Cell40, 897–907.

    Google Scholar 

  10. Gannon F et al. (1979) Nature278, 428–434.

    Google Scholar 

  11. Gazit A et al. (1984) Cell39, 89–97.

    Google Scholar 

  12. Gilardi P & Perricaudet M (1984) Nucleic Acids Res.12, 7877–7888.

    Google Scholar 

  13. Hearing P & Shenk T (1983) Cell33, 695–703.

    Google Scholar 

  14. Hennighausen L et al. (1985) Nature314, 289–292.

    Google Scholar 

  15. Holbrook NJ et al. (1984) Nucl. Acids Res.12, 5005–5013.

    Google Scholar 

  16. Hynes N et al. (1983) Proc. Natl. Acad. Sci. U.S.A.80, 3637–3641.

    Google Scholar 

  17. Johnson AD et al. (1981) Nature294, 217–223.

    Google Scholar 

  18. Josephs SF et al. (1984) Science225, 636–638.

    Google Scholar 

  19. Karin M et al. (1984) Nature308, 513–519.

    Google Scholar 

  20. Khoury G & Gruss P (1984) Cell33, 313–314.

    Google Scholar 

  21. Leonard WJ et al. (1984) Nature311, 626–631.

    Google Scholar 

  22. Leder P et al. (1983) Science222, 765–771.

    Google Scholar 

  23. Lewis JB & Mathews MB (1980) Cell21, 303–313.

    Google Scholar 

  24. Marx J (1984) Science225, 1008–1009.

    Google Scholar 

  25. McLauchlan J et al. (1985) Nucl. Acids Res.13, 1347–1368.

    Google Scholar 

  26. Michalides R et al. (1985) Molecular and Cellular Biol.5, 823–830.

    Google Scholar 

  27. Miller AD, Curran T & Verma IM (1984) Cell36, 51–60.

    Google Scholar 

  28. Nagamine Y et al. (1984) Nucl. Acids Res.12, 9525–9540.

    Google Scholar 

  29. Nagata K et al. (1983) Proc. Natl. Acad. Sci. U.S.A.80, 6177–6181.

    Google Scholar 

  30. Nevins JR (1981) Cell26, 213–220.

    Google Scholar 

  31. Nikaido T et al. (1984) Nature311, 631–635.

    Google Scholar 

  32. Person H et al. (1984) Science225, 687–693.

    Google Scholar 

  33. Propst F & Vande Woude GF (1985) Nature315, 516–518.

    Google Scholar 

  34. Renan MJ (1985) Cancer Letters, in press.

  35. Reudelhuber T (1984) Nature312, 700–701.

    Google Scholar 

  36. Robertson M (1984) Nature309, 585–587.

    Google Scholar 

  37. Siebenlist U et al. (1984) Cell37, 381–391.

    Google Scholar 

  38. Seiki M et al. (1983) Proc. Natl. Acad. Sci. U.S.A.80, 3618–3622.

    Google Scholar 

  39. Sodroski JG, Rosen CA & Haseltine WA (1984a) Science225, 381–385.

    Google Scholar 

  40. Sodroski J et al. (1984b) Proc. Natl. Acad. Sci. U.S.A.81, 4617–4621.

    Google Scholar 

  41. Sodroski J et al. (1985) Science228, 1430–1434.

    Google Scholar 

  42. Tooze J, ed (1980)Molecular Biology of Tumor Viruses, Part 2: DNA Tumor Viruses, Cold Spring Harbor Press, New York.

    Google Scholar 

  43. Van Beveren C et al. (1983) Cell32, 1241–1255.

    Google Scholar 

  44. Van Straten F, Müller R, Curran T, Van Beveren C & Verma I (1984) Proc. Natl. Acad. Sci. U.S.A.80, 3183–3187.

    Google Scholar 

  45. Veldman GM, Lupton S & Kamen R (1985) Molecular and Cellular Biol.5, 649–658.

    Google Scholar 

  46. Waslyk B et al. (1980) Proc. Natl. Acad. Sci. U.S.A.77, 7024–7028.

    Google Scholar 

  47. Weiss R, Teich N, Varmus HE & Coffin J, eds (1982)RNA Tumor Viruses, Cold Spring Harbor Press, New York.

    Google Scholar 

  48. Wharton RP, Brown EL, Ptashne M (1984) Cell38, 361–369.

    Google Scholar 

  49. Wood TG et al. (1984) Proc. Natl. Acad. Sci. U.S.A.81, 7817–7821.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Renan, M.J. Putative repressor binding sites in the regions mediating transcriptional control of viral and cellular genes. Biosci Rep 5, 739–753 (1985). https://doi.org/10.1007/BF01119872

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01119872

Keywords

Navigation