Advertisement

Soviet Atomic Energy

, Volume 47, Issue 4, pp 847–849 | Cite as

Gas-chromatographic examination of the accumulation of3H,85Kr, and133Xe in the protective gas, sodium coolant, and constructional materials of the BR-10

  • L. I. Moseev
  • N. N. Aristarkov
  • I. A. Efimov
  • V. N. Piskunov
  • V. I. Smolyakov
  • S. I. Shkuro
Letters to the Editor
  • 20 Downloads

Conclusions

The tritium level in the sodium coolant in the first loop on the BR-10 attained 6·10−4 Ci/liter, but this fell to 9·10−6 Ci/liter when the oxide trap was working. The second loop accumulates tritium up to 3.5·10−5 Ci/liter with the cold trap switched out. The tritium level in the protective gas in the first loop is low (10−10–10−8 Ci/cm3). Fuel-rod sheaths contain3H and85Kr. No tritium was detected in the air vented to the stack in the BR-10.

Keywords

Oxide Sodium Tritium Cold Trap Constructional Material 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    L. F. Belovodskii et al., At. Energ.,38, No. 4, 217 (1975).Google Scholar
  2. 2.
    A. I. Burnazyan, At. Energ.,39, No. 3, 167 (1975).Google Scholar
  3. 3.
    P. V. Gel'd and R. A. Ryabov, Hydrogen in Metals and Alloys [in Russian], Metallurgiya, Moscow (1974).Google Scholar
  4. 4.
    H. Peterson et al., Environmental Tritium Contamination from Increasing Utilization of Nuclear Energy Sources, IAEA Vienna, (1969).Google Scholar
  5. 5.
    I. Good et al., Trans. Am. Nucl. Soc.,15, 87 (1972).Google Scholar
  6. 6.
    E. Ebersole et al., ibid.,14, 321 (1974).Google Scholar
  7. 7.
    B. Sehgal and R. Rempert, ibid., 779.Google Scholar
  8. 8.
    C. Erdman and A. Reynolds, Nucl. Safety,16, No. 1, 43 (1975).Google Scholar
  9. 9.
    Yu. E. Bagdasarov et al., Technical Problems of Fast Reactors [in Russian], Atomizdat, Moscow (1965). p. 209.Google Scholar
  10. 10.
    L. I. Moiseev et al., Byull. Izobret., No. 18, 36 (1971).Google Scholar
  11. 11.
    L. L. Kunin, E. D. Molinova, and B. A. Chapyzhnikov, Determination of Oxygen, Carbon, Nitrogen, and Hydrogen in Alkali and Alkaline-Earth Metals [in Russian], Atomizdat, Moscow (1972).Google Scholar
  12. 12.
    L. I. Mikhalichenko and V. K. Markov, Zavod. Lab.,41, No. 7, 769 (1975).Google Scholar
  13. 13.
    L. I. Moseev et al., in: Methods of Identifying and Examining the States of Gases in Metals (Third All-Union Conference) [in Russian], Part 2, Nauka, Moscow (1973), p. 162.Google Scholar
  14. 14.
    V. I. Subbotin, M. N. Ivanovskii, and M. N. Arnol'dov, Physicochemical Principles of Liquid-Metal Coolants [in Russian], Atomizdat, Moscow (1970).Google Scholar
  15. 15.
    Yu. E. Bagdarsarov et al., [9], p. 166.Google Scholar
  16. 16.
    P. V. Gel'd, V. B. Vykhodets, and R. A. Ryabov, [13], p. 17.Google Scholar
  17. 17.
    R. Blomquist, K. Cafasso, and H. Fedez, J. Nucl. Mater.,59, No. 2, 199 (1976).Google Scholar
  18. 18.
    R. Corroll, Nucl. Safety,8, No. 4, 345 (1967).Google Scholar

Copyright information

© Plenum Publishing Corporation 1980

Authors and Affiliations

  • L. I. Moseev
  • N. N. Aristarkov
  • I. A. Efimov
  • V. N. Piskunov
  • V. I. Smolyakov
  • S. I. Shkuro

There are no affiliations available

Personalised recommendations